Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Myriad non-linearity for GNSS robust signal processing

The robustness of standard correlation-based Global Navigation Satellite System (GNSS) signal processing can be significantly improved by pre-processing the input samples with a zero-memory non-linearity (ZMNL). A paradigm for the design of ZMNLs is provided by the M-estimator framework where heavy-tailed probability density functions (pdfs) are used to model the impairments affecting the input samples. The myriad non-linearity, obtained considering a Cauchy pdf, is analysed for the acquisition and tracking of GNSS signals in the presence of pulsed interference. The impact of the myriad non-linearity is theoretically characterised and Monte Carlo simulations are used to support theoretical findings. Finally, real GNSS signals collected in the presence of jamming are processed: the myriad non-linearity provides a significant performance improvement with respect to standard GNSS signal processing which is unable to acquire and track the samples affected by interference.

References

    1. 1)
      • 10. Borio, D.: ‘Swept GNSS jamming mitigation through pulse blanking’. Proc. of the European Navigation Conf. (ENC), May 2016, pp. 18, doi: 10.1109/EURONAV.2016.7530549.
    2. 2)
      • 1. Kolodziejski, K.R., Betz, J.W.: ‘Detection of weak random signals in IID non-Gaussian noise’, IEEE Trans. Commun., 2000, 48, (2), pp. 222230, ISSN 0090-6778, doi: 10.1109/26.823555.
    3. 3)
      • 4. Huber, P.J., Ronchetti, E.M.: ‘Robust statistics’ (Wiley Probability and Statistics, John Wiley and Sons, 2009, 2nd edn.).
    4. 4)
      • 21. Abramowitz, M., Stegun, I.A. (Eds.): ‘Handbook of mathematical functions’ (Dover Publications, New York, 1972).
    5. 5)
      • 24. Simon, M.K.: ‘Probability distributions involving Gaussian random variables’, ‘International series in engineering and computer science’ (Springer-Verlag, New York, NY, 2010, 2nd edn.).
    6. 6)
      • 3. Kaplan, E.D., Hegarty, C. (Eds.): ‘Understanding GPS: principles and applications’ (Artech House Publishers, Norwood, MA, USA, 2005, 2nd edn.).
    7. 7)
      • 6. Kassam, S.A., Poor, H.V.: ‘Robust techniques for signal processing: a survey’, Proc. IEEE, 1985, 73, (3), pp. 433481, ISSN 0018-9219, doi: 10.1109/PROC.1985.13167.
    8. 8)
      • 19. Borio, D., Cano, E.: ‘Optimal global navigation satellite system pulse blanking in the presence of signal quantisation’, IET Signal Process., 2013, 7, (5), pp. 400410, ISSN 1751-9675, doi: 10.1049/iet-spr.2012.0199.
    9. 9)
      • 15. Van Dierendonck, A.: ‘Ch. 5, GPS receivers’, in Parkinson, B.W., Spilker, J.J.Jr. (Eds.): ‘Global positioning system theory and applications’ (American Institute of Aeronautics & Astronautics, 1996), vol. 1, pp. 329407.
    10. 10)
      • 18. Lee, H.Y., Park, H.J., Kim, H.M.: ‘A clarification of the Cauchy distribution’, Commun. Stat. Appl. Methods, 2014, 21, (2), p. 183191.
    11. 11)
      • 5. Arce, G.R.: ‘Nonlinear signal processing: a statistical approach’ (Wiley-Interscience, 2004).
    12. 12)
      • 2. Miller, J., Thomas, J.: ‘Detectors for discrete-time signals in non-Gaussian noise’, IEEE Trans. Inf. Theory, 1972, 18, (2), pp. 241250, ISSN 0018-9448, doi: 10.1109/TIT.1972.1054787.
    13. 13)
      • 23. Borio, D., Camoriano, L., Lo Presti, L.: ‘The impact of GPS acquisition strategy on decision probabilities’, IEEE Trans. Aerosp. Electron. Syst., 2008, 44, (3), pp. 9961010.
    14. 14)
      • 8. Zair, S., Hgarat-Mascle, S.L., Seignez, E.: ‘A-contrario modeling for robust localization using raw gnss data’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (5), pp. 13541367, ISSN 1524-9050, doi: 10.1109/TITS.2015.2502279.
    15. 15)
      • 22. Mitch, R.H., Dougherty, R.C., Psiaki, M.L., et al: ‘Signal characteristics of civil GPS jammers’. Proc. of the 24th Int. Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS), Portland, OR, September 2011, pp. 19071919.
    16. 16)
      • 9. Gonzalez, J.G., Arce, G.R.: ‘Optimality of the myriad filter in practical impulsive-noise environments’, IEEE Trans. Signal Process., 2001, 49, (2), pp. 438441, ISSN 1053-587X, doi: 10.1109/78.902126.
    17. 17)
      • 16. Huber, P.J.: ‘Robust estimation of a location parameter’, Ann. Math. Stat., 1964, 35, (1), pp. 73101, doi: 10.1214/aoms/1177703732.
    18. 18)
      • 17. Wang, X., Poor, H.V.: ‘Robust multiuser detection in non-Gaussian channels’, IEEE Trans. Signal Process., 1999, 47, (2), pp. 289305, ISSN 1053-587X, doi: 10.1109/78.740103.
    19. 19)
      • 13. Borio, D.: ‘A statistical theory for gnss signal acquisition’. PhD Thesis, Politecnico di Torino, 2008.
    20. 20)
      • 14. Kay, S.M.: ‘Fundamentals of statistical signal processing: estimation theory’ (Pearson Education, 1993), vol. 1.
    21. 21)
      • 7. Kassam, S.A.: ‘Signal detection in non-Gaussian noise’ (Springer-Verlag, 1988).
    22. 22)
      • 12. Betz, J.W.: ‘Effect of partial-band interference on receiver estimation of C/N0: theory’. Proc. of the National Technical Meeting of The Institute of Navigation, Long Beach, CA, January 2001, pp. 817828.
    23. 23)
      • 11. Betz, J.W.: ‘Binary offset carrier modulations for radionavigation’, J. Inst. Navig., 2001, 48, (4), pp. 227246.
    24. 24)
      • 20. Betz, J.W.: ‘Effect of narrowband interference on GPS code tracking accuracy’. Proc. of the National Technical Meeting of the Institute of Navigation, Anaheim, CA, January 2000, pp. 1627.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2016.0610
Loading

Related content

content/journals/10.1049/iet-rsn.2016.0610
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address