Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Cognitive FDA-MIMO radar for LPI transmit beamforming

Active radar is vulnerable to illegal eavesdroppers due to its high-gain beam-scanning signals. To reduce active radar visibility and enhance its low probability of intercept (LPI) capability, this study proposes a cognitive LPI transmit beamforming scheme using frequency diverse array (FDA) and multiple-input multiple-output (MIMO) hybrid array antenna. The achievement of LPI is due to the unique range-angle-dependent transmitting beampattern of FDA-MIMO radar, which minimises the beam power at the target location to reduce its visibility and simultaneously maximise the power at the radar receiver without degrading the radar detection performance. Furthermore, the FDA-MIMO radar operates in a cognitive way: the receiver estimates the target range and the direction of arrival with a two-dimensional multiple signal classification algorithm, and feedbacks their estimates to the transmitter to update the FDA-MIMO transmit beamforming. As the transmit beamforming optimisation is non-convex problem, the authors propose three methods, namely linear combination, non-linear combination and closed form solution. All the proposed methods are verified by simulation results.

References

    1. 1)
      • 23. Sammartino, P.F., Baker, C.: ‘The frequency diverse bistatic system’. Proc. 4th Waveform Diversity and Design Conf., Orlando, FL, February 2009, pp. 155159.
    2. 2)
      • 21. Secmen, M., Demir, S., Hizal, A., et al: ‘Frequency diverse array antenna with periodic time modulated pattern in range and angle’. Proc. IEEE Radar Conf., Boston, MA, April 2007, pp. 427430.
    3. 3)
      • 38. Luo, Z.-Q., Ma, W.-K., So, A.M., et al: ‘Semidefinite relaxation of quadratic optimization problems’, IEEE Signal Process. Mag., 2010, 27, (3), pp. 2034.
    4. 4)
      • 10. Wirth, W.D.: ‘Omni-directional low probability of intercept radar’. Proc. of the IEEE Radar Conf., Paris, 1989, pp. 2530.
    5. 5)
      • 15. Wicks, M.C., Antonik, P.: ‘Frequency diverse array with independent modulation of frequency, amplitude, and phase’. USA Patent 7,319,427, 15 January 2008.
    6. 6)
      • 9. Baghdady, E.J.: ‘Directional signal modulation by means of switched spaced antennas’, IEEE Trans. Commun., 1990, 38, (4), pp. 399403.
    7. 7)
      • 25. Farooq, J., Temple, M.A., Saville, M.A.: ‘Exploiting frequency diverse array processing to improve SAR imaging resolution’. Proc. of the IEEE Radar Conf., Rome, Italy, May 2008, pp. 15.
    8. 8)
      • 20. Brady, S.: ‘Frequency diverse array radar: Signal characterization and measurement accuracy’. Master's thesis, Air Force Institute of Technology, 2010.
    9. 9)
      • 19. Aytun, A.: ‘Frequency diverse array radar’. Master's thesis, Naval Postgraduate School, 2010.
    10. 10)
      • 33. Haykin, S., Xue, Y., Setoodeh, P.: ‘Cognitive radar: step toward bridging the gap between neuroscience and engineering’, Proc. IEEE, 2012, 100, (11), pp. 31023130.
    11. 11)
      • 32. Haykin, S.: ‘Cognitive radar’, IEEE Signal Process. Mag., 2006, 23, (1), pp. 3040.
    12. 12)
      • 26. Farooq, J.: ‘Frequency diversity for improving synthetic aperture radar imaging’. PhD dissertation, Air Force Institute of Technology, 2009.
    13. 13)
      • 4. Olsen, K.E., Johnsen, T., Johnsrud, S., et al: ‘Results from an experimental continuous wave low probability of intercept bistatic radar – the first steps toward multistatic radar’. Proc. IEEE Radar Conf., 2003, pp. 288292.
    14. 14)
      • 5. Anderson, B.E., Persson, M., Boman, K.: ‘FMCW and super resolution techniques applied to an LPI short range air search radar’. Proc. IEEE Radar Conf., October 1997, pp. 406410.
    15. 15)
      • 31. Basit, A., Qureshi, I.M., Khan, W., et al: ‘Hybridization of cognitive radar and phased array radar having low probability of intercept transmit beamforming’, Int. J. Antennas Propag., 2014, 2014, (1), pp. 627630.
    16. 16)
      • 8. Shirman, Y., Leshchenko, S., Orlenko, V.M.: ‘Advantages and problems of wideband radar’. Proc. IEEE Radar Conf., 2003, pp. 1521.
    17. 17)
      • 12. Binias, G.: ‘Target track extraction procedure for OLPI antenna data on the basis of Hough transforms’, IET Radar Sonar Navig., 2002, 149, pp. 2932.
    18. 18)
      • 24. Farooq, J., Temple, M.A., Saville, M.A.: ‘Application of frequency diverse arrays to synthetic aperture radar imaging’. Proc. Int. Electromagnetics in Advances Applications Conf., Torino, Italy, September 2007, pp. 447449.
    19. 19)
      • 17. Antonik, P., Wicks, M.C.: ‘Multi-mission multi-mode waveform diversity’. Proc. IEEE Radar Conf., Verona, NY, April 2006, pp. 580582.
    20. 20)
      • 14. Wang, W.-Q.: ‘Overview of frequency diverse array in radar and navigation applications’, IET Radar Sonar Navig., 2016, 10, (6), pp. 10011012.
    21. 21)
      • 36. Xu, J., Liao, G.S., Zhu, S.Q., et al: ‘Joint range and angle estimation using MIMO radar with frequency diverse array’, IEEE Trans. Signal Process., 2015, 63, (13), pp. 33963410.
    22. 22)
      • 18. Antonik, P.: ‘An investigation of a frequency diverse array’. PhD dissertation, University College, London, 2009.
    23. 23)
      • 27. Wang, Y.B., Wang, W.-Q., Shao, H.Z.: ‘Frequency diverse array Cramér-Rao lower bounds for estimating direction, range and velocity’, Int. J. Antennas Propag., 2014, 2014, Article ID: 830869, pp. 110.
    24. 24)
      • 34. Sammartino, P.F., Baker, C.J., Griffiths, H.D.: ‘Frequency diverse MIMO techniques for radar’, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (1), pp. 201222.
    25. 25)
      • 3. Basit, A., Qureshi, I.M., Khan, W., et al: ‘Hybridization of cognitive radar and phased array radar having low probability of intercept transmit beamforming’, Int. J. Antennas Propag., 2014, 2014, pp. 111.
    26. 26)
      • 37. Gao, K.D., Wang, W.-Q., Cai, J.Y.: ‘Frequency diverse array and MIMO hybrid radar transmitter design via CRLB minimization’, IET Radar Sonar Navig., 2016, 11, pp. 16601670.
    27. 27)
      • 11. Wirth, W.D.: ‘Radar techniques using array antennas’ (IET, London, U.K., 2001).
    28. 28)
      • 30. Xue, Y.: ‘Cognitive radar: theory and simulations’. PhD thesis, McMaster University, Ontario, Canada, 2010.
    29. 29)
      • 22. Baizert, P., Hale, T.B., Temple, M.A., et al: ‘Forward looking radar GMTI benefits using a linear frequency diverse array’, Electron. Lett., 2006, 42, (22), pp. 13111312.
    30. 30)
      • 39. Gtrant, M.C., Boyd, S.P.: ‘The CVX users’ guide’. Release 2.1, 2015, Available at http://cvxr.com/cvx/doc/CVX.pdf.
    31. 31)
      • 35. Gao, K., Shao, H., Cai, J., et al: ‘Frequency diverse array MIMO radar adaptive beamforming with range-dependent interference suppression in target localization’, Int. J. Antennas Propag., 2015, 2015, Article ID 358582, pp. 110.
    32. 32)
      • 1. Schrick, G., Wiley, R.: ‘Interception of LPI radar signals’. Proc. of the IEEE Radar Conf., 1990, pp. 108111.
    33. 33)
      • 16. Antonik, P., Wicks, M.C.: ‘Method and apparatus for simultaneous synthetic aperture and moving target indication’. USA Patent, June 5, 2008, application 20080129584.
    34. 34)
      • 6. Burgos-Garcia, M., Sanmartin-Jara, J.: ‘A LPI tracking radar system based on frequency hopping’. Proc. Int. Radar Symp., Munich, Germany, September 1998, pp. 151159.
    35. 35)
      • 29. Wang, W.-Q.: ‘Moving-target tracking by adaptive RF stealth radar using frequency diverse array antenna’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (7), pp. 37643773.
    36. 36)
      • 2. Lawrence, D.E.: ‘Low probability of intercept antenna array beamforming’, IEEE Trans. Antennas Propag., 2010, 58, (9), pp. 28582865.
    37. 37)
      • 13. Antonik, P., Wicks, M.C., Griffiths, H.D., et al: ‘Frequency diverse array radars’. Proc. IEEE Radar Conf., Verona, NY, April 2006, pp. 215217.
    38. 38)
      • 28. Wang, W.-Q.: ‘Cognitive frequency diverse array radar with situational awareness’, IET Radar Sonar Navig., 2016, 10, (2), pp. 359369.
    39. 39)
      • 7. Liu, G., Gu, H., Su, W., et al: ‘Random signal radar – a winner in both the military and civilian operating environments’, IEEE Trans. Aerospace Electron. Syst., 2003, 39, (2), pp. 489498.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2016.0551
Loading

Related content

content/journals/10.1049/iet-rsn.2016.0551
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address