http://iet.metastore.ingenta.com
1887

Coordination of optimal guidance law and adaptive radiated waveform for interception and rendezvous problems

Coordination of optimal guidance law and adaptive radiated waveform for interception and rendezvous problems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors present an algorithm that allows an interceptor aircraft equipped with an airborne radar to meet another air target (the intercepted) by developing a guidance law and automatically adapting and optimising the transmitted waveform on a pulse-to-pulse basis. The algorithm uses a Kalman filter to predict the relative position and speed of the interceptor with respect to the target. The transmitted waveform is automatically selected based on its ambiguity function and accuracy properties along the approaching path. For each pulse, the interceptor predicts its position and velocity with respect to the target, takes a measurement of range and radial velocity and, with the Kalman filter, refines the relative range and range rate estimates. These are fed into a linear quadratic Gaussian controller that ensures the interceptor reaches the target automatically and successfully with minimum error and with the minimum guidance energy consumption.

References

    1. 1)
      • M.W.M.G. Dissanayake , P. Newman , S. Clark .
        1. Dissanayake, M.W.M.G., Newman, P., Clark, S., et al: ‘A solution to the simultaneous localization and map building (SLAM) problem’, IEEE Trans. Robot. Autom., 2001, 17, (3), pp. 229241.
        . IEEE Trans. Robot. Autom. , 3 , 229 - 241
    2. 2)
      • M. Athans .
        2. Athans, M.: ‘On optimal allocation and guidance laws for linear interception and rendezvous problems’, IEEE Trans. Aerosp. Electron. Syst., 1971, AES-7, (5), pp. 843853.
        . IEEE Trans. Aerosp. Electron. Syst. , 5 , 843 - 853
    3. 3)
      • D. Kershaw , R. Evans .
        3. Kershaw, D., Evans, R.: ‘Optimal waveform selection for tracking systems’, IEEE Trans. Inf. Theory, 1994, 40, (5), pp. 15361550.
        . IEEE Trans. Inf. Theory , 5 , 1536 - 1550
    4. 4)
      • C. Baker , H. Griffiths , A. Balleri . (2012)
        4. Baker, C., Griffiths, H., Balleri, A.: ‘Biologically inspired waveform diversity (in waveform design and diversity for advanced radar systems)’, in Gini, F., De Maio, A., Patton, L. (Eds.): ‘Waveform design and diversity for advanced radar systems, Series Radar Sonar Navigation Avionics’ (Institute of Engineering Technology, 2012), pp. 149172.
        .
    5. 5)
      • P. Flandrin . (1998)
        5. Flandrin, P.: ‘Time–frequency of bat sonar signals’, in (EDs.): ‘Animal sonar: processes and performance’ (Springer US, Boston MA, 1998), pp. 797802.
        .
    6. 6)
      • F. Hlawatsch , G.F. Boudreaux-Bartels .
        6. Hlawatsch, F., Boudreaux-Bartels, G.F.: ‘Linear and quadratic time–frequency signal representations’, IEEE Signal Process. Mag., 1992, 9, (2), pp. 2167.
        . IEEE Signal Process. Mag. , 2 , 21 - 67
    7. 7)
      • P.J. Nahin . (2012)
        7. Nahin, P.J.: ‘Chases and escapes: the mathematics of pursuit and evasion’ (Princeton University Press: Princeton NJ, 2012).
        .
    8. 8)
      • A. Farina .
        8. Farina, A.: ‘Cognitive radar signal processing’. IET Int. Radar Conf. Key Note Speech, Hangzhou, China, 14–16 October 2015.
        . IET Int. Radar Conf. Key Note Speech
    9. 9)
      • H.L. Van Trees . (2001)
        9. Van Trees, H.L.: ‘Detection, estimation and modulation theory, part III. Radar-sonar signal processing and Gaussian Signals in noise’ (Wiley: New York, 2001).
        .
    10. 10)
      • C.E. Cook , M. Bernfeld . (1987)
        10. Cook, C.E., Bernfeld, M.: ‘Radar signals: an introduction to theory and application’ (Artech House: Boston London, 1987).
        .
    11. 11)
      • E. Kelly .
        11. Kelly, E.: ‘The radar measurement of range, velocity and direction with an active array’, IRE Trans. Mil. Electron., 1961, ML-5, (2), pp. 5157.
        . IRE Trans. Mil. Electron. , 2 , 51 - 57
    12. 12)
      • A. Dogandzic , A. Nehorai .
        12. Dogandzic, A., Nehorai, A.: ‘Cramér–Rao bounds for estimating range, velocity, and direction with an active array’, IEEE Trans. Signal Process., 2001, 49, (6), pp. 11221137.
        . IEEE Trans. Signal Process. , 6 , 1122 - 1137
    13. 13)
      • A. Balleri , A. Farina .
        13. Balleri, A., Farina, A.: ‘Ambiguity function and accuracy of the hyperbolic chirp: comparison with the linear chirp’. IET Radar Sonar Navig., 2017, 11, (1), pp. 142153, doi: 10.1049/iet-rsn.2016.0100.
        . IET Radar Sonar Navig. , 1 , 142 - 153
    14. 14)
      • R.A. Singer .
        14. Singer, R.A.: ‘Estimating optimal tracking filter performance for manned maneuvering targets’, IEEE Trans. Aerosp. Electron. Syst., 1970, AES-6, (4), pp. 473483.
        . IEEE Trans. Aerosp. Electron. Syst. , 4 , 473 - 483
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2016.0547
Loading

Related content

content/journals/10.1049/iet-rsn.2016.0547
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address