Radar wake-vortices cross-section/Doppler signature characterisation based on simulation and field tests trials

Radar wake-vortices cross-section/Doppler signature characterisation based on simulation and field tests trials

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Runway operation is the limiting factor for the overall throughput of airports. Today the International Civil Aviation Organization (ICAO) imposes wake vortex separation minima between following aircrafts that are based on simple pair-wise rules. However, the lifetime of wake vortices results from a much broader basis of factors, that ranges from a large set of aircraft parameters to meteorological conditions and traffic mix. In particular atmospheric conditions can significantly reduce wake hazard, for instance, in case of strong turbulence or crosswinds. While such situations could allow a reduction of the separation minima, safety reasons and the current technical challenges of detecting and managing such scenarios leads to the strict application of the ICAO standards. With the aid of accurate wind data and precise measurements of wake vortices, more efficient intervals could be set, particularly when weather conditions turn favourable. Depending on traffic intensity, these adjustments could enhance airport capacity, and generate major commercial benefits. This study deals with recent development in the radar technology to attain such goals. It presents (i) the trials of an electronic scanning radar to be used in a future wake turbulence advisory system and (ii) theoretical and numerical analysis of the radar response in clear air and in rainy weather. Part of this work has been achieved with the support of the European ATM research program SESAR.


    1. 1)
      • 1. Condit, P.M., Tracy, P.W.: ‘Results of the Boeing company wake turbulence test program, in aircraft wake turbulence and its detection’ (Plenum Press, New York, 1971), p. 473.
    2. 2)
      • 2. Easterbrook, C.C., Joss, W.W.: ‘The Utility of Doppler Radar in the study of aircraft wing-tip vortices’. Proc. of a Symp. On aircraft Wake Turbulence, 1970, pp. 97112.
    3. 3)
    4. 4)
      • 4. Burnham, D.C.: ‘Review of vortex sensor development since 1970’. Proc. of the Aircraft Wake Vortex Conf., 1977.
    5. 5)
      • 5. Chadwick, R.B., Jordan, J., Detman, T.: ‘Radar detection of wingtip vortices’. 9th Conf. of Aerospace and Aeronautical Meteorology, 1983, pp. 235240.
    6. 6)
      • 6. Steven, F., Connolly, T.N., Dagle, W.R.: ‘The measurement of wake vortices with clear-air Doppler radar’. Proc. of the aircraft Wake-Vortex Conf., 1992, vol. II.
    7. 7)
      • 7. Nespor, J.D., Hudson, B., Stegall, R.L., et al: ‘Doppler Radar detection of wake vortex indicators’. Proc. of the aircraft Wake-Vortex Conf., 1992, vol. II.
    8. 8)
      • 8. Shephard, D.J., Kyte, A.P., Segura, C.A.: ‘Radar wake vortex measurements at F and I band’. IEEE Proc., 1992.
    9. 9)
      • 9. Rat, G., Bertin, F.: ‘Etude théorique de la détection des vortex générés dans le sillage des avions à l'aide d'un radar’. CNRS/CRPE report, 1992.
    10. 10)
      • 10. Gilson, W.H.: ‘Aircraft Wake RCS measurement’. NASA Contractor Rep. 10139, 1994, Part 2, pp. 603623.
    11. 11)
      • 11. Nespor, J.D., Hudson, B., Stegall, R.L., et al: ‘Doppler Radar detection of vortex hazard indicators’. Tech. rep., NASA, Langley Research Center, 1994.
    12. 12)
      • 12. Marshall, R.E., Myers, T.: ‘Wingtip generated wake vortices as radar targets’. IEEE AES Systems Magazine, 1994, pp. 2730.
    13. 13)
      • 13. Marshall, R.E., Mudukutore, A., Wissel, V.L.H., et al: ‘Three-centimeter Doppler radar observations of wingtip-generated wake vortices in clear air’, Contract NAS1-18925 for Langley Research Center, 1997.
    14. 14)
      • 14. Marshall, R.E., Mudukutore, A.: ‘Wake vortex radar performance studies and simulated detection of wake vortices by a Ka-band radar in fog’. RTI International Report RTI/4500/53-01F, Research Triangle Park, 1996.
    15. 15)
      • 15. Mackenzie, A.: ‘Measured Changes in C-band radar reflectivity of clear air due to aircraft wake vortices’. NASA Technical Paper 3671, NASA Langley Research Center, 1997.
    16. 16)
      • 16. Hanson, J.M., Marcotte, F.J.: ‘Aircraft wake vortex detection using continuous-wave radar’, Johns Hopkins APL Tech. Dig., 1997, 18, pp. 348357.
    17. 17)
      • 17. Mudukutore, A., Staton, L.D., White, J.H., et al: ‘Pre-experiment report: wake vortex Ka band radar performance studies’. RTI International Report RTI/4500/062-1I, Research Triangle Park, 1998.
    18. 18)
      • 18. Tank, W.: ‘Airplane wake detection with a VHF CW bistatic radar’. In the 35th Aerospace Sciences Meeting and Exhibit, 1997.
    19. 19)
      • 19. Iannuzzelli, R.J., , Schemm, C.E., , Marcotte, F.J.: ‘Aircraft wake detection using bistatic radar: analysis of experimental results’, John Hopkins Appl. Phys. Lab. Tech. Dig., 1998, 19, pp. 299314.
    20. 20)
      • 20. Myers, T.J., Scales, W.A.: ‘Determination of aircraft wake vortex radar cross section due to coherent Bragg scatter from mixed atmospheric water vapour’, Radio Sci., 1999, 361 34 (1), 103C11.
    21. 21)
    22. 22)
      • 22. Neece, R.T., Britt, C.L., White, J.H., et al: ‘Wake vortex tracking using a 35 GHz pulsed Doppler Radar’. 5th NASA Integrated Communications, Navigation, and Surveillance (ICNS) Conf. and Workshop, 2005.
    23. 23)
    24. 24)
      • 24. Seliga, T.A., Mead, J.B.: ‘Meter-scale observations of aircraft wake vortices in precipitation using a high resolution solid-state W-band radar’. 34th Conf. on Radar Meteorology, Williamsburg, USA, 2009, 5-9, P10.25, 7p.
    25. 25)
      • 25. Steen, M., Schönhals, S., Polvinen, J., et al: ‘Airport radar monitoring of wake vortex in all weather conditions’. Eurocontrol Nineth Innovative Research Workshop & Exhibition, 2009.
    26. 26)
      • 26. Derracq, D., Gerz, T., Holzäpfel, F.: ‘Aircraft wake vortices: a position paper’. Wakenet Position Paper, 6th April 2001.
    27. 27)
    28. 28)
      • 28. De Visscher, I., Bricteux, L., Winckelmans, G., et al: ‘Large Eddy simulations of aircraft wake vortices in a stably stratified atmosphere’. Sixth Int. Symp. on Turbulent and Shear Flow Phenomena (TSFP-6), vol. 3, Seoul National University, Seoul, Korea, June 2009, pp. 11791183.
    29. 29)
      • 29. DeVisscher, I., Winckelmans, G., Lonfils, T., et al: ‘The WAKE4D simulation platform for predicting Aircraftwake Vortex Transport and decay: description and examples of application’. AIAA Paper 2010-7994, August 2010.
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
      • 35. Brion, V., Sipp, D., Jacquin, L.: ‘Optimal amplification of the crow instability’, Phys. Fluids (1994-present), 2007, 19, (11).
    36. 36)
      • 36. Jacquin, L.: ‘Aircraft wake vortices’ (Encyclopedia of Mechanical Engineering, Wiley-Blackwell, 2003).
    37. 37)
    38. 38)
      • 38. Li, J., Wang, X., Wang, T.: ‘Scattering mechanism of aircraft wake vortices generated in clear air’. IEEE Radar Conf., 2010, 2010.
    39. 39)
    40. 40)
      • 40. Vanhoenacker-Janvier, D., Djafri, K., della Faille de Leverghem, R., et al: ‘Simulation of the radar cross-section of wake vortices in clear air’. ERAD'12 Conf., Toulouse, France, 2012.
    41. 41)
      • 41. Ishimaru, A.: ‘Wave propagation and scattering in random media’ (Academic Press, New York, USA, 1978).
    42. 42)
      • 42. Liu, Z., Jeannin, N., Vincent, F., et al: ‘Development of a radar simulator for monitoring wake vortices in rainy weather’. CIE Intl. Conf. on Radar, Chengdu, China, 2011.
    43. 43)
    44. 44)
      • 44. Liu, Z.: ‘Modélisation des signatures radar des tourbillons de sillage par temps de pluie’. PhD report, ISAE, Toulouse, 2013.
    45. 45)
    46. 46)
      • 46. Sauvageot, H.: ‘Radar meteorology’ (Artech House Publishers, 1992).
    47. 47)
      • 47. Khraisat, Y.S.H., Yanovsky, F.J.: ‘Reflections from raindrops in case of turbulence: phenomenological analysis and signal processing’. SPIE Proc., 2007, vol. 6937.
    48. 48)
      • 48. Meier, U., Jeantet, A., Barbaresco, F.: ‘Wake vortex detection & monitoring by X-band Doppler Radar: Paris Orly Radar Campaign Results’. IET Conf., Edinburgh, Great Britain, October 2007.
    49. 49)
      • 49. Barbaresco, F., Wasselin, J.P., Jeantet, A., et al: ‘Wake vortex monitoring & profiling by Doppler X-band radar in all weather conditions’. EUROCONTROL Innovative Research Workshop, Bretigny, 2007.
    50. 50)
      • 50. Barbaresco, F., Meier, U., Jeantet, A.: ‘Wake vortex profiling by Doppler X-band Radar: Orly trials at initial take-off & ILS interception critical areas’. IEEE Int. Radar Conf., Rome, May 2008.
    51. 51)
      • 51. Barbaresco, F., Meier, U.: ‘Wake vortex X-band radar monitoring: Paris-CDG airport 2008 campaign results & prospectives’. IEEE Int. Radar Conf., Radar'09, Bordeaux, France, 2009.
    52. 52)
    53. 53)
      • 53. Barbaresco, F.: ‘Airport radar monitoring of wake vortex in all weather conditions’. Proc. 7th European Radar Conf., Paris, 2010, pp. 8588.
    54. 54)
      • 54. Barbaresco, F., Juge, P., Klein, M., et al: ‘Optimising runway throughput through wake vortex detection, prediction and decision support tools’. ESAV'11 Conf. Proc., Capri, Italy, 2011.
    55. 55)
      • 55. Barbaresco, F., Juge, P., Klein, M., et al: ‘Wake vortex detection, prediction and decision support tools. New challenges for airports to increase capacity and safety’, Revue REE, 2013, 3, pp. 1525.
    56. 56)
      • 56. Barbaresco, F., Juge, P., Klein, M., et al: ‘Boom of airport capacity based on wake-vortex hazards mitigation sensors and systems, airports in urban networks’. AUN'14, Paris, 2014.
    57. 57)
      • 57. Barbaresco, F., Bruchec, P., Canal, D., et al: ‘Eddy Dissipation Rate (EDR) retrieval with ultra-fast high range resolution electronic-scanning X-band airport radar: results of European FP7 UFO Toulouse Airport trials’. Int. Radar Symp., IRS'15, Dresden, Germany, June 2015.

Related content

This is a required field
Please enter a valid email address