http://iet.metastore.ingenta.com
1887

Range-Doppler surface: a tool to analyse human target in ultra-wideband radar

Range-Doppler surface: a tool to analyse human target in ultra-wideband radar

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A novel concept, called range-Doppler surface (RDS), for human target analysis using ultra-wideband radar is proposed. The construction of RDS involves range-Doppler (RD) imaging, adaptive threshold detection and isosurface extraction. A Keystone-transform-based range migration compensation approach is proposed to allow high-quality RD imaging using ultra-wideband radar. Adaptive threshold detection is applied to detect the extended target in the RD image, and RDS is constructed by extracting an isosurface from a RD video sequence, which is defined as a sequence of RD images. In comparison with micro-Doppler profiles and high-resolution range profiles, RDS contains range, Doppler and time information simultaneously. An ellipsoid-based human motion model is designed for validation. RDSs simulated for different human activities are demonstrated and discussed. Finally, experimental results for single/two-people walking scenarios are presented to verify the simulation results. The use of the RDS opens a new area of human target analysis.

References

    1. 1)
    2. 2)
      • Y. He .
        2. He, Y.: ‘Human target tracking in multistatic ultra-wideband radar’. PhD thesis, Delft University of Technology, 2014.
        .
    3. 3)
      • V.C. Chen .
        3. Chen, V.C.: ‘Analysis of radar micro-Doppler with time-frequency transform’. Proc. Tenth IEEE Workshop on Statistical Signal and Array Processing, USA, 2000, pp. 463466.
        . Proc. Tenth IEEE Workshop on Statistical Signal and Array Processing , 463 - 466
    4. 4)
      • V.C. Chen . (2011)
        4. Chen, V.C.: ‘The micro-Doppler effect in radar’ (Artech House, 2011).
        .
    5. 5)
      • D. Tahmoush , J. Silvious .
        5. Tahmoush, D., Silvious, J.: ‘Recognizing and tracking humans and vehicles using radar’. Proc. SPIE 7539, Intelligent Robots and Computer Vision XXVII: Algorithms and Techniques, 2010, p. 753907.
        . Proc. SPIE 7539, Intelligent Robots and Computer Vision XXVII: Algorithms and Techniques , 753907
    6. 6)
    7. 7)
    8. 8)
      • M. Andrić , D. Bujaković , B. Bondžulić .
        8. Andrić, M., Bujaković, D., Bondžulić, B., et al: ‘Analysis of radar doppler signature from human data’, Radioengineering, 2014, 23, (1), pp. 1119.
        . Radioengineering , 1 , 11 - 19
    9. 9)
    10. 10)
      • O.R. Fogle .
        10. Fogle, O.R.: ‘Human micro-range/micro-Doppler signature extraction,association, and statistical characterization for high-resolution radar’. PhD thesis, Wright State University, 2011.
        .
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • S.S. Ram , H. Ling .
        17. Ram, S.S., Ling, H.: ‘Simulation of human micro-Dopplers using computer animation data’. Proc. IEEE Radar Conf., Rome, Italy, 2008, pp. 16.
        . Proc. IEEE Radar Conf. , 1 - 6
    18. 18)
      • 18. ‘Carnegie Mellon University Motion capture database’, available at http://mocap.cs.cmu.edu/, accessed December 2014.
        .
    19. 19)
      • R. Drillis , R. Contini , M. Bluestein .
        19. Drillis, R., Contini, R., Bluestein, M.: ‘Body segment parameters’, Artif. Limbs, 1964, 8, pp. 4466.
        . Artif. Limbs , 44 - 66
    20. 20)
      • B.R. Mahafza . (2000)
        20. Mahafza, B.R.: ‘Radar systems analysis and design using MATLAB’ (Chapman and Hall/CRC, 2000).
        .
    21. 21)
    22. 22)
      • Y. He , P. Aubry , F. Le Chevalier .
        22. He, Y., Aubry, P., Le Chevalier, F., et al: ‘Keystone transform based range-Doppler processing for human target in UWB radar’. Proc. IEEE Radar Conf., Cincinnati, USA, 2014, pp. 13471352.
        . Proc. IEEE Radar Conf. , 1347 - 1352
    23. 23)
      • R.P. Perry , R.C. DiPietro , R. Fante .
        23. Perry, R.P., DiPietro, R.C., Fante, R.: ‘Coherent integration with range migration using Keystone formatting’. Proc. IEEE Radar Conf., USA, 2007, pp. 863868.
        . Proc. IEEE Radar Conf. , 863 - 868
    24. 24)
      • Z. Wu , X. He , T. Su .
        24. Wu, Z., He, X., Su, T.: ‘Coheret integration detection of multiple high speed targets with range migration and Doppler spread’. Proc. IET Int. Radar Conf., China, 2009, pp. 15.
        . Proc. IET Int. Radar Conf. , 1 - 5
    25. 25)
      • A.V. Oppenheim , R.W. Schafer , J.R. Buck . (1999)
        25. Oppenheim, A.V., Schafer, R.W., Buck, J.R., et al: ‘Discrete-time signal processing’ (Prentice Hall, Upper Saddle River, 1999).
        .
    26. 26)
      • M.A. Richards , J.A. Scheer , W.A. Holm . (2010)
        26. Richards, M.A., Scheer, J.A., Holm, W.A.: ‘Principles of modern radar:basic priciples’ (SciTech Publishing, 2010).
        .
    27. 27)
      • O.B. Daho , J. Khamlichi , O. Chappe .
        27. Daho, O.B., Khamlichi, J., Chappe, O., et al: ‘Using CFAR algorithm to further improve a combined through-wall imaging method’. Proc. 20th European Signal Processing Conference (EUSIPCO), Romania, 2012, pp. 25212525.
        . Proc. 20th European Signal Processing Conference (EUSIPCO) , 2521 - 2525
    28. 28)
      • 28. ‘Time Domain Corporation’, available at http://www.timedomain.com/, accessed December 2014.
        .
    29. 29)
      • T. Sakamoto , T. Sato , Y. He .
        29. Sakamoto, T., Sato, T., He, Y., et al: ‘Texture-based technique for separating echoes from people walking in UWB radar signals’. Proc. URSI Int. Symp. on Electromagnetic Theory, Japan, 2013, pp. 119122.
        . Proc. URSI Int. Symp. on Electromagnetic Theory , 119 - 122
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2015.0065
Loading

Related content

content/journals/10.1049/iet-rsn.2015.0065
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address