Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Efficient architecture and hardware implementation of coherent integration processor for digital video broadcast-based passive bistatic radar

In this study, the problem of efficient implementation of a coherent integration processor in passive bistatic radars (PBRs) in the presence of range migration is addressed. The authors present a coherent integration architecture for PBR, which consists of a frequency-domain pulse compression module to reduce the overall runtime for the computation of the cross-ambiguity function, and an efficient decimated keystone transform module based on the chirp z-transform to compensate the range migration. The proposed architecture is then implemented in a hybrid central processing unit plus graphic processing unit scheme. Real measurement data are used to verify the superior integration performance and reduced computational complexity achieved by the proposed scheme.

References

    1. 1)
    2. 2)
      • 13. Raout, J.: ‘Sea target detection using passive DVB-T based radar’. Proc. Int. Conf. Radar, Adelaide, Australia, 2–5 September 2008, pp. 695700.
    3. 3)
    4. 4)
      • 8. Griffiths, H.: ‘Bistatics: introduction and historical background’. NATO Research and Technology Organisation Lecture Series RTO-EN-SET-133 (Multistatic Surveillance and Reconnaissance: Sensor, Signals and Data Fusion), 2009.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 25. Cantini, C., La Rosa, E., Lo Re, A., Di Lallo, A.: ‘Passive coherent locator signal processor on IBM Cell broadband engine (Cell BE)’. IEEE Radar Conf., Pasadena, CA, USA, 4–8 May 2009.
    12. 12)
      • 31. Willis, N.J.: ‘Bistatic radar’ (SciTech Publishing, Raleigh, NC, 2005, 2nd edn.).
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 28. Bernaschi, M., Di Lallo, A., Fulcoli, R., Gallo, E., Timmoneri, L.: ‘Combined use of graphics processing unit (GPU) and central processing unit (CPU) for passive radar signal & data elaboration’. Proc. Int. Radar Symp. (IRS2011), Leipzig, Germany, 7–9 September 2011, pp. 315320.
    20. 20)
    21. 21)
      • 21. Malanowski, M., Kulpa, K., Olsen, K.E.: ‘Extending the integration time in DVB-T-based passive radar’. Proc. European Radar Conf. (EuRAD), Manchester, UK, 12–14 October 2011, pp. 190193.
    22. 22)
      • 19. Feng, Y., Shan, T., Zhuo, Z.H., Tao, R.: ‘The migration compensation methods for DTV based passive radar’. IEEE Radar Conf., Ottawa, Canada, 29 April–3 May 2013.
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 38. cuFFT: CUDA toolkit documentation’, http://www.docs.nvidia.com/cuda/cufft/index.html, accessed April 2015.
    29. 29)
      • 26. John, M., Inggs, M., Petri, D.: ‘Real time processing of networked passive coherent location radar system’, Int. J. Electr. Telecommun., 2011, 57, (3), pp. 363368.
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
      • 27. Pidanic, J., Nemec, Z., Dolecek, R., Bezousek, P.: ‘Computing of bistatic cross-ambiguity function on GPU’. IEEE Int. Symp. on Industrial Electronics (ISIE 2013), Taipei, China, 28–31 May 2013.
    37. 37)
      • 40. Fasih, A., Hartley, T.: ‘GPU-accelerated synthetic aperture radar backprojection in CUDA’. Proc. IEEE Radar Conf., Arlington, USA, 10–14 May 2010, pp. 14081413.
    38. 38)
      • 39. Standardization Administration of the People's Republic of China Framing Structure, Channel Coding and Modulation for Digital Television Terrestrial Broadcasting System, GB20600–2006, 2006.
    39. 39)
    40. 40)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2015.0006
Loading

Related content

content/journals/10.1049/iet-rsn.2015.0006
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address