Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Measurement fusion using maximum-likelihood estimation of ballistic trajectories

A novel method is proposed for asynchronous measurement fusion using maximum-likelihood (ML) estimator. This method is applied to multiple radar tracking and reconstruction of ballistic trajectories. The performance and robustness of the ML measurement fusion technique are analysed using a generic simulation scenario involving multi-sensor weapon locating in urban environment. Accuracies of firing point and impact point estimation of mortar grenades and artillery rockets are also evaluated taking into account different radars’ characteristics and geometries of the scenario. Immunity to glint noise, limited time of observation, and uncertainty of ballistic coefficient are also investigated. This study shows the effectiveness of the new method, advantages over track fusion approach, and reveals its practical value.

References

    1. 1)
      • 5. Harman, S., Calloway, V., Wallace, N., et al: ‘Sensor network performance modelling for weapon locating’. Proc. IEEE Aerospace Conf., 2004, pp. 20882095.
    2. 2)
      • 8. Rong Li, X., Jilkov, V.P.: ‘A survey of maneuvering target tracking: approximation techniques for nonlinear filtering’. Proc. SPIE Conf. Signal and Data Processing of Small Targets, April 2004, pp. 537550.
    3. 3)
      • 23. Siouris, G.M.: ‘Missile guidance and control systems’ (Springer, New York, NY, 2003).
    4. 4)
      • 11. Reali, F., Palmerini, G., Farina, A., et al: ‘Tracking a ballistic target by multiple model approach’. IEEE Aerospace Conf., March 2009, pp. 114.
    5. 5)
      • 2. Center for Army Lessons Learned: ‘Operations in Mosul, Iraq’. Initial Impressions Report, 2004.
    6. 6)
      • 29. Grishin, Yu., Janczak, D.: ‘A detection-estimation method for systems with random jumps with application to target tracking and fault diagnosis’, in Evans, T. (Ed.): ‘Nonlinear Dynamics’ (Intech, 2010), pp. 343366.
    7. 7)
      • 12. Janczak, D., Grishin, Y.P.: ‘The GLR failure detection algorithm for a class of nonlinear dynamic models with application to radar tracking problems’. Proc. Int. Radar Symp. IRS, May 2008, pp. 233240.
    8. 8)
    9. 9)
      • 14. Nelson, E., Pachter, M., Musick, S.: ‘Projectile launch point estimation from radar measurements’. Proc. American Control Conf., June 2005, pp. 12751282.
    10. 10)
    11. 11)
    12. 12)
      • 30. Dana, M.P.: ‘Registration: a prerequisite for multiple sensor tracking’, in Bar-Shalom, Y. (Ed.): ‘Multitarget-multisensor tracking: advanced applications’ (Artech House, Norwood, MA, 1990), ch. 5, pp. 155185.
    13. 13)
    14. 14)
    15. 15)
      • 25. Kay, S.: ‘Fundamentals of statistical signal processing: estimation theory’ (Prentice-Hall, 1993).
    16. 16)
    17. 17)
      • 13. Hall, D., McMullen, S.A.H.: ‘Mathematical techniques in multisensor data fusion’ (Artech House, Norwood, MA, 2004).
    18. 18)
      • 24. Szadkowski, J.: ‘External ballistics. Ballistic model’ (Kielce University of Technology, Kielce, Poland, 2004).
    19. 19)
    20. 20)
      • 15. Farina, A., Immediata, S., Timmoneri, L., et al: ‘Comparison of recursive and batch processing for impact point prediction of ballistic target’. IEEE Int. Radar Conf., 2005, pp. 121126.
    21. 21)
      • 26. Janczak, D., Sankowski, M.: ‘Measurement fusion using batch estimation for trajectory reconstruction of ballistic targets’. Proc. Int. Conf. on Multisource-Multisensor Information Fusion FUSION, Singapore, July 2012, pp. 15541561.
    22. 22)
      • 28. Barton, D.: ‘Radar systems analysis and modelling’ (Artech House, Norwood, MA, 2005).
    23. 23)
      • 19. Frenkel, G.: ‘Multisensor tracking of ballistic targets’. Proc. SPIE Conf. Signal and Data Processing of Small Targets, July 1995, vol. 2561, pp. 337346.
    24. 24)
      • 17. Farina, A., Timmoneri, L., Vigilante, D.: ‘Classification and launch-impact point prediction of ballistic target via multiple model maximum likelihood estimator (MM-MLE)’. IEEE Int. Radar Conf., 2006, pp. 802806.
    25. 25)
      • 27. Nojman, J.: ‘Database of mortar and artillery rocket characteristics’. Technical Report, 5416/OG/11, PIT-RADWAR S.A., May2009.
    26. 26)
    27. 27)
      • 1. Campbell, J.H.: ‘TA in Sarajevo – multinational and terrain challenges of operation joint endeavor’, Field Artillery, 1997, pp. 1114.
    28. 28)
      • 22. Little, R.N.W.: ‘Target acquisition coordination centre – lessons learned for both TUAV and CBTA radar introduction on operations’, Can. Army J., 2004, 7, pp. 6773.
    29. 29)
      • 4. Rutkowski, T., Sankowski, M.: ‘Polish Army weapon-locating radar WLR-100. Evolution of capabilities’. NATO Defence Against Mortar Attack (DAMA) Symp., May 2008, pp. 132.
    30. 30)
      • 6. Pengelley, R.: ‘Armed forces seek the WLR connection’. Jane's Int. Defence Review, January 2009, pp. 3643.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2014.0316
Loading

Related content

content/journals/10.1049/iet-rsn.2014.0316
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address