http://iet.metastore.ingenta.com
1887

Multi-window time–frequency signature reconstruction from undersampled continuous-wave radar measurements for fall detection

Multi-window time–frequency signature reconstruction from undersampled continuous-wave radar measurements for fall detection

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Fall detection is an area of increasing interest in independence-assisting remote monitoring technologies for the elderly population. Immediate assistance following a fall can lower the risk of medical complications, thus saving lives and reducing the associated health care costs. Therefore it is important to detect a fall as it happens and promptly mobilise first responders for proper care and attendance to possible injury. Radar offers privacy and non-intrusive monitoring capabilities. Micro-Doppler signatures are typically employed for radar-based human motion detections and classifications. Proper time–frequency signal representation is, therefore, required from which important features can be extracted. Missing or noise/interference corrupted data can compromise the integrity of micro-Doppler signatures and subsequently confuse the classifier. In this study, the authors restore the time–frequency signatures associated with human motor activities, such as falling, bending over, sitting and standing, by using a hybrid approach of compressive sensing and multi-window analysis based on Slepian or Hermite functions. Because time–frequency representations of many human gross-motor activities are sparse and share common support in joint-variable domains, the multiple measurement vector approach can be effectively applied for fall classification in both cases of full data or compressed observations.

References

    1. 1)
      • X. Yu .
        1. Yu, X.: ‘Approaches and principles of fall detection for elderly and patient’. IEEE Int. Conf. HealthCom, Singapore, July 2008, pp. 4247.
        . IEEE Int. Conf. HealthCom , 42 - 47
    2. 2)
    3. 3)
      • L. Liu , M. Popescu , M. Skubic , M. Rantz , T. Yardibi , P. Cuddihy .
        3. Liu, L., Popescu, M., Skubic, M., Rantz, M., Yardibi, T., Cuddihy, P.: ‘Automatic fall detection based on Doppler radar motion signature’. PervasiveHealth, 2011, pp. 222225.
        . PervasiveHealth , 222 - 225
    4. 4)
      • L. Ramirez Rivera , E. Ulmer , Y.D. Zhang , W. Tao , M.G. Amin .
        4. Ramirez Rivera, L., Ulmer, E., Zhang, Y.D., Tao, W., Amin, M.G.: ‘Radar-based fall detection exploiting time-frequency features’. Proc. IEEE China Summit and Int. Conf. Signal and Inf. Process., Xi'an, China, July 2014.
        . Proc. IEEE China Summit and Int. Conf. Signal and Inf. Process.
    5. 5)
      • M.I. Skolnik . (2001)
        5. Skolnik, M.I.: ‘Radar Systems’ (McGraw-Hill, 2001).
        .
    6. 6)
      • P. Setlur , M. Amin , F. Ahmad .
        6. Setlur, P., Amin, M., Ahmad, F.: ‘Analysis of micro-Doppler signals using linear FM basis decomposition’. Proc. SPIE, Orlando, FL, April 2006, vol. 6210.
        . Proc. SPIE
    7. 7)
      • C. Clemente , A. Balleri , K. Woodbridge , J.J. Soraghan .
        7. Clemente, C., Balleri, A., Woodbridge, K., Soraghan, J.J.: ‘Developments in target micro-Doppler signatures analysis: radar imaging, ultrasound and through-the-wall radar’, EURASIP J. Adv. Signal Process., 2013, 47, (1), pp. 118.
        . EURASIP J. Adv. Signal Process. , 1 , 1 - 18
    8. 8)
      • V.C. Chen .
        8. Chen, V.C.: ‘Analysis of radar micro-Doppler with time-frequency transform’. Proc. IEEE Workshop on Stat. Signal and Array Process., Pocono Manor, PA, August 2000, pp. 463466.
        . Proc. IEEE Workshop on Stat. Signal and Array Process. , 463 - 466
    9. 9)
      • M. Bayram , R.G. Baraniuk .
        9. Bayram, M., Baraniuk, R.G.: ‘Multiple window time-frequency and time-scale analysis’. Proc. SPIE, 1996, pp. 174185.
        . Proc. SPIE , 174 - 185
    10. 10)
      • F. Cakrak , P.J. Loughlin .
        10. Cakrak, F., Loughlin, P.J.: ‘Multiple window non-linear time-varying spectral analysis’. Proc. IEEE ICASSP, 1998, vol. 4, pp. 24092412.
        . Proc. IEEE ICASSP , 2409 - 2412
    11. 11)
      • G. Fraser , B. Boashash .
        11. Fraser, G., Boashash, B.: ‘Multiple window spectrogram and time-frequency distributions’. Proc. IEEE ICASSP, 1994, vol. 4, pp. IV293.
        . Proc. IEEE ICASSP , IV - 293
    12. 12)
      • M. Hansson .
        12. Hansson, M.: ‘Multiple window decomposition of time-frequency kernels using a penalty function for suppressed sidelobes’. Proc. IEEE ICASSP, Toulouse, France, May 2006, pp. 28832886.
        . Proc. IEEE ICASSP , 2883 - 2886
    13. 13)
      • W.J. Williams , S. Aviyente .
        13. Williams, W.J., Aviyente, S.: ‘Optimum window time-frequency distribution decompositions’. Proc. Asilomar Conf., Pacific Grove, CA, November 1998, vol. 1, pp. 817821.
        . Proc. Asilomar Conf. , 817 - 821
    14. 14)
    15. 15)
      • J.W. Pitton .
        15. Pitton, J.W.: ‘Time-frequency spectrum estimation: an adaptive multitaper method’. Proc. IEEE-SP Int. Symp. Time-Frequency and Time-Scale Analysis, Pittsburgh, PA, October 1998, pp. 665668.
        . Proc. IEEE-SP Int. Symp. Time-Frequency and Time-Scale Analysis , 665 - 668
    16. 16)
    17. 17)
    18. 18)
      • I. Orović , N. Žarić , S. Stanković , M. Amin .
        18. Orović, I., Žarić, N., Stanković, S., Amin, M.: ‘A multiwindow time-frequency approach based on the concepts of robust estimate theory’. Proc. IEEE ICASSP, Prague, Czech Republic, May 2011, pp. 35843587.
        . Proc. IEEE ICASSP , 3584 - 3587
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • M.G. Amin . (2014)
        23. Amin, M.G.: ‘Compressive sensing for urban radar’ (CRC Press, 2014).
        .
    24. 24)
    25. 25)
      • B. Jokanović , M. Amin , S. Stanković .
        25. Jokanović, B., Amin, M., Stanković, S.: ‘Instantaneous frequency and time-frequency signature estimation using compressive sensing’. Proc. SPIE, Baltimore, MD, May 2013, vol. 8714.
        . Proc. SPIE
    26. 26)
      • Y.D. Zhang , M.G. Amin , B. Himed .
        26. Zhang, Y.D., Amin, M.G., Himed, B.: ‘Reduced interference time-frequency representations and sparse reconstruction of undersampled data’. Proc. European Signal Proc. Conf., Marrakech, Morocco, September 2013.
        . Proc. European Signal Proc. Conf.
    27. 27)
    28. 28)
    29. 29)
      • M.G. Amin , Y.D. Zhang , B. Jokanović .
        29. Amin, M.G., Zhang, Y.D., Jokanović, B.: ‘Time-frequency signature reconstruction from random observations using multiple measurement vectors’. Proc. IEEE ICASSP, Florence, Italy, May 2014.
        . Proc. IEEE ICASSP
    30. 30)
      • B. Jokanović , M.G. Amin , Y.D. Zhang .
        30. Jokanović, B., Amin, M.G., Zhang, Y.D.: ‘Reconstruction of multi-window time-frequency representation based on Hermite functions’. Proc. SPIE, Baltimore, MD, May 2014.
        . Proc. SPIE
    31. 31)
    32. 32)
    33. 33)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2014.0254
Loading

Related content

content/journals/10.1049/iet-rsn.2014.0254
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address