Signal processing for harmonic pulse radar based on spread spectrum technology

Signal processing for harmonic pulse radar based on spread spectrum technology

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents the signal processing techniques applied on a 9.4/18.8 GHz harmonic radar, which is used to investigate behaviours of small insects such as bees, beetles and butterflies. It is still a challenge to achieve high accuracy and long detection range simultaneously in a harmonic pulse radar system. The authors combine the spread spectrum technology with the classic pulse harmonic radar system to overcome the dilemma between accuracy and detection range. The processing gain of the pseudo-random code from the spread spectrum technology is used to increase the sensitivity and makes the system able to detect the signal with the weak power strength below the system noise level. To eliminate the effect caused by the local leakage, the signal-processing method provided to cancel the leakage through applying the symmetric property of the autocorrelation function of the pseudo-random code. In the field tests, the proposed system achieves a 60 m detection range within 1 m ranging accuracy by using 1.75 W transmitting power corresponding to 40.430 dBW equivalent-isotropically radiated power (EIRP). It is estimated to extend to at least 900 m detection range by using a 3 kW transmitting power corresponding to 72.771 dBW EIRP.


    1. 1)
      • 1. Colpitts, B.G., Boiteau, G.: ‘Harmonic radar transceiver design: miniature tags for insect tracking’, IEEE Trans. Antennas Propag., 2004, 52, (11), pp. 28252832 (doi: 10.1109/TAP.2004.835166).
    2. 2)
      • 2. Kiriazi, J., Nakakura, J., Lubecke, V., Hall, K.: ‘Low profile harmonic radar transponder for tracking small endangered species’. 29th Annual Int. Conf. on IEEE Engineering in Medicine and Biology Society, Lyon, France, August 2007, pp. 23382341.
    3. 3)
      • 3. Ovaskainen, O., Smith, A.D., Osborne, J.L., et al: ‘Tracking butterfly movements with harmonic radar reveals an effect of population age on movement distance’. Proc. National Academy of Sciences of the United States of America, December 2008, pp. 1909019095.
    4. 4)
      • 4. Psychoudakis, D., Moulder, W., Chi-Chih, C., Heping, Z., Volakis, J.L.: ‘A portable low-power harmonic radar system and conformal tag for insect tracking’, IEEE Antennas Wirel. Propag. Lett., 2008, 7, pp. 444447 (doi: 10.1109/LAWP.2008.2004512).
    5. 5)
      • 5. Riley, J.R., Smith, A.D., Reynolds, D.R., et al: ‘Tracking bees with harmonic radar’, Nature, 1996, 379, (6560), pp. 29 (doi: 10.1038/379029b0).
    6. 6)
      • 6. Tahir, N., Brooker, G.: ‘Recent developments and recommendations for improving harmonic radar tracking systems’. Proc. fifth European Conf. on Antennas and Propagation (EUCAP), April 2011, pp. 15311535.
    7. 7)
      • 7. Lihoreau, M., Raine, N.E., Reynolds, A.M., et al: ‘Radar tracking and motion-sensitive cameras on flowers reveal the development of pollinator multi-destination routes over large spatial scales’, PLoS Biol., 2012, 10, (9), pp. e1001392 (doi: 10.1371/journal.pbio.1001392).
    8. 8)
      • 8. Osborne, J.L., Clark, S.J., Morris, R.J., et al: ‘A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar’, J. Appl. Ecol., 1999, 36, (4), pp. 519533 (doi: 10.1046/j.1365-2664.1999.00428.x).
    9. 9)
      • 9. Riley, J.R., Smith, A.D.: ‘Design considerations for an harmonic radar to investigate the flight of insects at low altitude’, Comput. Electron. Agric., 2002, 35, (2–3), pp. 151169 (doi: 10.1016/S0168-1699(02)00016-9).
    10. 10)
      • 10. Webster, J.G.: ‘The measurement, instrumentation, and sensors handbook’ (CRC Press published in cooperation with IEEE Press, 1999).
    11. 11)
      • 11. Skolnik, M.I.: ‘Radar handbook’ (McGraw-Hill, 2008).
    12. 12)
      • 12. Tsai, Z.M., Jau, P.H., Kuo, N.C., et al: ‘A high-range-accuracy and high-sensitivity harmonic radar using pulse pseudorandom code for bee searching’, IEEE Trans. Microw. Theory Tech., 2013, 61, (1), pp. 666675 (doi: 10.1109/TMTT.2012.2230020).
    13. 13)
      • 13. Tsai, Z.M., Jau, P.H., Kuo, N.C., et al: ‘A high range resolution 9.4/18.8 GHz harmonic radar for bees searching’. 2012 IEEE MTT-S Int. Microwave Symp. Digest, Montreal, QC, Canada, June 2012.
    14. 14)
      • 14. Zepernick, H.-J., Finger, A.: ‘Pseudo random signal processing: theory and application’ (Wiley, 2005).
    15. 15)
      • 15. Dorsett, M.J.: ‘Radar processing of 2n− 1 and 2n Prn coded waveforms’. 13th Int. Conf. Microwaves, Radar and Wireless Communications, May 2000, pp. 623626.
    16. 16)
      • 16. Holmes, J.K.: ‘Spread spectrum systems for GNSS and wireless communications’ (Artech House, 2007).
    17. 17)
      • 17. Peterson, R.L., Ziemer, R.E., Borth, D.E.: ‘Introduction to spread-spectrum communications’ (Prentice-Hall, 1995).
    18. 18)
      • 18. Misra, P., Enge, P.: ‘Global positioning system: signals, measurements, and performance’ (Ganga-Jamuna Press, 2001).
    19. 19)
      • 19. Hale, T.B., Temple, M.A., Crossley, B.L.: ‘Ambiguity analysis for pulse compression radar using gold code sequences’. Proc. 2001 IEEE Radar Conf., May 2001, pp. 111116.
    20. 20)
      • 20. Jau, P.-H., Tsai, Z.-M., Kuo, N.-C., Chang, F.-R., Wang, H., Lin, K.-Y.: ‘A BPSK-based harmonic ranging system’. Proc. 2011 Int. Technical Meeting of The Institute of Navigation, San Diego, California, USA, January 2011, pp. 238243.
    21. 21)
      • 21. Peebles, P.Z.: ‘Probability, random variables, and random signal principles’ (McGraw-Hill, 2000, 4th edn.).
    22. 22)
      • 22. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: ‘Discrete-time signal processing’ (Prentice-Hall International, 1999).

Related content

This is a required field
Please enter a valid email address