http://iet.metastore.ingenta.com
1887

Dynamic waveform selection for manoeuvering target tracking in clutter

Dynamic waveform selection for manoeuvering target tracking in clutter

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In recent years, cognitive radar (CR) with waveform diversity has exhibited significant performance improvements over the traditional fixed waveform radar and become an area of vigorous research and development. This study presents a dynamic waveform selection algorithm to strive for tracking error minimisation for CR manoeuvering target tracking in clutter. Based on the concepts of resolution cell and measurement extraction cell, the statistical characteristics of radar measurements are discussed without dependence upon the Cramér-Rao lower bound of the measurement errors and the high signal-to-noise ratio assumption. A particle filter combined with probabilistic data association is used as a tracker. To quantify the utility of available waveforms, the predicted tracking mean-square error, because of its dependence on actual future measurements, is approximated efficiently via Gaussian fitting of the prior density of the target state and statistical linearisation of the measurement equation. Monte Carlo simulation results show that the proposed dynamic waveform selection algorithm can improve tracking performance considerably, especially in terms of track loss probability.

References

    1. 1)
      • S. Haykin .
        1. Haykin, S.: ‘Cognitive radar: a way of the future’, IEEE Signal Process. Mag., 2006, 23, (1), pp. 3040 (doi: 10.1109/MSP.2006.1593335).
        . IEEE Signal Process. Mag. , 1 , 30 - 40
    2. 2)
      • S.P. Sira , A. Papandreou-Suppappola , D. Morrell .
        2. Sira, S.P., Papandreou-Suppappola, A., Morrell, D.: ‘Dynamic configuration of time-varying waveforms for agile sensing and tracking in clutter’, IEEE Trans. Signal Process., 2007, 55, (7), pp. 32073217 (doi: 10.1109/TSP.2007.894418).
        . IEEE Trans. Signal Process. , 7 , 3207 - 3217
    3. 3)
      • F. Gini , A. De Maio , L.K. Patton .
        3. Gini, F., De Maio, A., Patton, L.K.: Waveform Design and Diversity for Advanced Radar Systems. IET Series 22, 2012.
        .
    4. 4)
      • D.J. Kershaw , R.J. Evans .
        4. Kershaw, D.J., Evans, R.J.: ‘Optimal waveform selection for tracking systems’, IEEE Trans. Inf. Theory, 1994, 40, (5), pp. 15361550 (doi: 10.1109/18.333866).
        . IEEE Trans. Inf. Theory , 5 , 1536 - 1550
    5. 5)
      • D.J. Kershaw , R.J. Evans .
        5. Kershaw, D.J., Evans, R.J.: ‘Waveform selective probabilistic data association’, IEEE Trans. Aerosp. Electron. Syst., 1997, 33, (4), pp. 11801188 (doi: 10.1109/7.625110).
        . IEEE Trans. Aerosp. Electron. Syst. , 4 , 1180 - 1188
    6. 6)
      • C. Rago , P. Willett , Y. Bar-Shalom .
        6. Rago, C., Willett, P., Bar-Shalom, Y.: ‘Detection-tracking performance with combined waveforms’, IEEE Trans. Aerosp. Electron. Syst., 1998, 34, (2), pp. 612624 (doi: 10.1109/7.670395).
        . IEEE Trans. Aerosp. Electron. Syst. , 2 , 612 - 624
    7. 7)
      • Y. Bar-Shalom .
        7. Bar-Shalom, Y.: ‘Negative correlation and optimal tracking with Doppler measurements’, IEEE Trans. Aerosp. Electron. Syst., 2001, 37, (3), pp. 11171120 (doi: 10.1109/7.953264).
        . IEEE Trans. Aerosp. Electron. Syst. , 3 , 1117 - 1120
    8. 8)
      • R. Niu , P. Willett , Y. Bar-Shalom .
        8. Niu, R., Willett, P., Bar-Shalom, Y.: ‘Tracking considerations in selection of radar waveform for range and range-rate measurements’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (2), pp. 467487 (doi: 10.1109/TAES.2002.1008980).
        . IEEE Trans. Aerosp. Electron. Syst. , 2 , 467 - 487
    9. 9)
      • H. Sun-Mog , R.J. Evans , S. Han-Seop .
        9. Sun-Mog, H., Evans, R.J., Han-Seop, S.: ‘Optimization of waveform and detection threshold for range and range-rate tracking in clutter’, IEEE Trans. Aerosp. Electron. Syst., 2005, 41, (1), pp. 1733 (doi: 10.1109/TAES.2005.1413743).
        . IEEE Trans. Aerosp. Electron. Syst. , 1 , 17 - 33
    10. 10)
      • C.O. Savage , B. Moran .
        10. Savage, C.O., Moran, B.: ‘Waveform selection for maneuvering targets within an IMM framework’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (3), pp. 12051214 (doi: 10.1109/TAES.2007.4383612).
        . IEEE Trans. Aerosp. Electron. Syst. , 3 , 1205 - 1214
    11. 11)
      • S. Haykin , A. Zia , Y. Xue , I. Arasaratnam .
        11. Haykin, S., Zia, A., Xue, Y., Arasaratnam, I.: ‘Control theoretic approach to tracking radar: first step towards cognition’, Digit. Signal Process., 2011, 21, (5), pp. 576585 (doi: 10.1016/j.dsp.2011.01.004).
        . Digit. Signal Process. , 5 , 576 - 585
    12. 12)
      • M.R. Morelande , S. Challa .
        12. Morelande, M.R., Challa, S.: ‘Manoeuvring target tracking in clutter using particle filters’, IEEE Trans. Aerosp. Electron. Syst., 2005, 41, (1), pp. 252270 (doi: 10.1109/TAES.2005.1413760).
        . IEEE Trans. Aerosp. Electron. Syst. , 1 , 252 - 270
    13. 13)
      • Y. Bar-Shalom , F. Daum , J. Huang .
        13. Bar-Shalom, Y., Daum, F., Huang, J.: ‘The probabilistic data association filter’, IEEE Control Syst. Mag., 2009, 29, (6), pp. 82100 (doi: 10.1109/MCS.2009.934469).
        . IEEE Control Syst. Mag. , 6 , 82 - 100
    14. 14)
      • Y. Bar-Shalom , S. Challa , H.A.P. Blom .
        14. Bar-Shalom, Y., Challa, S., Blom, H.A.P.: ‘IMM estimator versus optimal estimator for hybrid systems’, IEEE Trans. Aerosp. Electron. Syst., 2005, 41, (3), pp. 986991 (doi: 10.1109/TAES.2005.1541443).
        . IEEE Trans. Aerosp. Electron. Syst. , 3 , 986 - 991
    15. 15)
      • M. Vespe , G. Jones , C.J. Baker .
        15. Vespe, M., Jones, G., Baker, C.J.: ‘Lessons for radar: waveform diversity in echolocating mammals’, IEEE Signal Process. Mag., 2009, 26, (1), pp. 6575 (doi: 10.1109/MSP.2008.930412).
        . IEEE Signal Process. Mag. , 1 , 65 - 75
    16. 16)
      • H.-U. Schnitzler , C.F. Moss , A. Denzinger .
        16. Schnitzler, H.-U., Moss, C.F., Denzinger, A.: ‘From spatial orientation to food acquisition in echolocating bats’, Trends Ecol. Evol., 2003, 18, (8), pp. 386394 (doi: 10.1016/S0169-5347(03)00185-X).
        . Trends Ecol. Evol. , 8 , 386 - 394
    17. 17)
      • Y. Bar-Shalom , W.S. Blair . (2000)
        17. Bar-Shalom, Y., Blair, W.S.: ‘Multitarget-Multisensor Tracking Vol III: Applications and Advances’ (Artech House, Boston, London, 2000).
        .
    18. 18)
      • A.I. Sinsky , C.P. Wang .
        18. Sinsky, A.I., Wang, C.P.: ‘Standardization of the definition of the radar ambiguity function’, IEEE Trans. Aerosp. Electron. Syst., 1974, 10, (4), pp. 532533 (doi: 10.1109/TAES.1974.307831).
        . IEEE Trans. Aerosp. Electron. Syst. , 4 , 532 - 533
    19. 19)
      • N. Levanon , E. Mozeson . (2004)
        19. Levanon, N., Mozeson, E.: ‘Radar signals’ (John Wiley & Sons, Hoboken, NewJersey, 2004).
        .
    20. 20)
      • P. Willett , R. Niu , Y. Bar-Shalom .
        20. Willett, P., Niu, R., Bar-Shalom, Y.: ‘Integration of Bayes detection with target tracking’, IEEE Trans. Signal Process., 2001, 49, (1), pp. 1729 (doi: 10.1109/78.890334).
        . IEEE Trans. Signal Process. , 1 , 17 - 29
    21. 21)
      • J.T. Wang , H.Q. Wang , Y.L. Qin , Z.W. Zhuang .
        21. Wang, J.T., Wang, H.Q., Qin, Y.L., Zhuang, Z.W.: ‘Efficient adaptive detection threshold optimization for tracking maneuvering targets in clutter’, Prog. Electromagn. Res. B, 2012, 41, pp. 357375.
        . Prog. Electromagn. Res. B , 357 - 375
    22. 22)
      • M. Hernandez , B. Ristic , A. Farina , T. Sathyan , T. Kirubarajan .
        22. Hernandez, M., Ristic, B., Farina, A., Sathyan, T., Kirubarajan, T.: ‘Performance measure for Markovian switching systems using best-fitting Gaussian distributions’, IEEE Trans. Aerosp. Electron. Syst., 2008, 44, (2), pp. 724747 (doi: 10.1109/TAES.2008.4560217).
        . IEEE Trans. Aerosp. Electron. Syst. , 2 , 724 - 747
    23. 23)
      • Y. Bar-Shalom , X.R. Li , T. Kirubarajan . (2001)
        23. Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: ‘Estimation with applications to tracking and navigation’ (John Wiley & Sons, Inc., New York, 2001).
        .
    24. 24)
      • R. Van der Merwe , E.A. Wan .
        24. Van der Merwe, R., Wan, E.A.: ‘Efficient derivative-free Kalman filters for online learning’. The European Symp. on Articial Neural Networks, Bruges, Belgium, 2001, pp. 205210.
        . The European Symp. on Articial Neural Networks , 205 - 210
    25. 25)
      • S. Julier , J. Uhlmann , H.F. Durrant-Whyte .
        25. Julier, S., Uhlmann, J., Durrant-Whyte, H.F.: ‘A new method for the nonlinear transformation of means and covariances in filters and estimators’, IEEE Trans. Autom. Control, 2000, 45, (3), pp. 477482 (doi: 10.1109/9.847726).
        . IEEE Trans. Autom. Control , 3 , 477 - 482
    26. 26)
      • K. Ito , K. Xiong .
        26. Ito, K., Xiong, K.: ‘Gaussian filters for nonlinear filtering problems’, IEEE Trans. Autom. Control, 2000, 45, (5), pp. 910927 (doi: 10.1109/9.855552).
        . IEEE Trans. Autom. Control , 5 , 910 - 927
    27. 27)
      • M.F. Huber , U.D. Hanebeck .
        27. Huber, M.F., Hanebeck, U.D.: ‘Gaussian filter based on deterministic sampling for high quality nonlinear estimation’. Proc. 17th IFAC World Congress, Seoul, Republic of Korea, 2008.
        . Proc. 17th IFAC World Congress
    28. 28)
      • M.N. Røgaard , N.K. Poulsen , O. Ravn .
        28. Røgaard, M.N., Poulsen, N.K., Ravn, O.: ‘New developments in state estimation for nonlinear systems’, Automatica, 2000, 36, (11), pp. 16271638 (doi: 10.1016/S0005-1098(00)00089-3).
        . Automatica , 11 , 1627 - 1638
    29. 29)
      • T. Fortmann , Y. Bar-Shalom , M. Scheffe , S. Gelfand .
        29. Fortmann, T., Bar-Shalom, Y., Scheffe, M., Gelfand, S.: ‘Detection thresholds for tracking in clutter – a connection between estimation and signal processing’, IEEE Trans. Autom. Control, 1985, 30, (3), pp. 221229 (doi: 10.1109/TAC.1985.1103935).
        . IEEE Trans. Autom. Control , 3 , 221 - 229
    30. 30)
      • D.J. Kershaw , R.J. Evans .
        30. Kershaw, D.J., Evans, R.J.: ‘A contribution to performance prediction for probabilistic data association tracking filters’, IEEE Trans. Aerosp. Electron. Syst., 1996, 32, (3), pp. 11431148 (doi: 10.1109/7.532274).
        . IEEE Trans. Aerosp. Electron. Syst. , 3 , 1143 - 1148
    31. 31)
      • G. Kitagawa .
        31. Kitagawa, G.: ‘Monte Carlo filter and smoother for non-Gaussian nonlinear state space models’, J. Comput. Graph. Stat., 1996, 5, (1), pp. 125.
        . J. Comput. Graph. Stat. , 1 , 1 - 25
    32. 32)
      • X. Zhang , P. Willett , Y. Bar-Shalom .
        32. Zhang, X., Willett, P., Bar-Shalom, Y.: ‘Uniform versus nonuniform sampling when tracking in clutter’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (2), pp. 388400 (doi: 10.1109/TAES.2006.1642559).
        . IEEE Trans. Aerosp. Electron. Syst. , 2 , 388 - 400
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2012.0310
Loading

Related content

content/journals/10.1049/iet-rsn.2012.0310
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address