access icon free Near-field source localisation using a velocity sensor array

This study presents a new algorithm for near-field source localisation by using a uniform linear array consisting of velocity-sensor pairs (VSPs). Two schemes are used for range and direction of arrival (DOA) estimation in the proposed algorithm. The first one exploits the acoustic velocity vector field's two Cartesian components and the triangular location relationship among the near-field sources and the VSPs. The resulting range and DOA estimates are ambiguity-free, regardless of the inter-sensor spacing. Whereas the second scheme uses the so-called electric angles to determine the ranges and DOAs. Although the derived estimates may be ambiguous in the case of the inter-sensor spacing larger than a quarter wavelength, this ambiguity can be removed by using the estimates obtained in the first scheme. Therefore the proposed algorithm can offer high estimation accuracy by increasing inter-sensor spacing (because of array aperture extension). In addition, the proposed algorithm does not require multidimensional search, pairing parameters or high-order statistics, hence, has a low computational complexity.

Inspec keywords: array signal processing; direction-of-arrival estimation; computational complexity

Other keywords: DOA estimation; estimation accuracy; velocity-sensor pairs; triangular location relationship; intersensor spacing; Cartesian components; array aperture extension; VSP; computational complexity; near-field sources; near-field source localisation; velocity sensor array; uniform linear array; electric angles; acoustic velocity vector field

Subjects: Signal processing theory; Signal processing and detection

References

    1. 1)
      • 17. Lemma, A.N., van der Veen, A., Deprettere, E.F.: ‘Analysis of joint angle-frequency estimation using ESPRIT’, IEEE Trans. Signal Process., 2003, 51, (5), pp. 12641283 (doi: 10.1109/TSP.2003.810306).
    2. 2)
      • 13. Wong, K.T., Zoltowski, M.D.: ‘Extended-aperture under water acoustic multi-source azimuth/elevation direction-finding using uniformly but sparsely spaced vector hydrophones’, IEEE J. Ocean. Eng., 1997, 22, (4), pp. 659672 (doi: 10.1109/48.650832).
    3. 3)
      • 14. He, J., Swamy, M.N.S., Omair Ahmad, M.: ‘Joint DOD and DOA estimation for MIMO array with velocity receive sensors’, IEEE Signal Process. Lett., 2011, 18, (7), pp. 399402 (doi: 10.1109/LSP.2011.2152393).
    4. 4)
      • 2. Zhi, W., Chia, M.Y.W.: ‘Near-field source localization via symmetric subarrays’, IEEE Signal Process. Lett., 2007, 14, (6), pp. 409412 (doi: 10.1109/LSP.2006.888390).
    5. 5)
      • 18. Abed-Meraim, K., Hua, Y.: ‘3-D near field source localization using second order statistics’. Proc. 31st Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, California, USA, 1997, (2), pp. 13071311.
    6. 6)
      • 19. Liang, J., Liu, D., Zeng, X., Wang, W., Zhang, J., Chen, H.: ‘Joint azimuth-elevation/(-range) estimation of mixed near-field and far-field sources using two-stage separated steering vector-based algorithm’, Prog. Electromagn. Res., 2011, 113, pp. 1746.
    7. 7)
      • 4. Yuen, N., Friedlander, B.: ‘Performance analysis of higher order ESPRIT for localization of near-field sources’, IEEE Trans. Signal Process., 1998, 46, (3), pp. 709719 (doi: 10.1109/78.661337).
    8. 8)
      • 1. Chen, J.C., Hudson, R.E., Kung, Y.: ‘Maximum likelihood source localization and unknown sensor location estimation for wideband signals in the near-field’, IEEE Trans. Signal Process., 2002, 50, (8), pp. 18431854 (doi: 10.1109/TSP.2002.800420).
    9. 9)
      • 12. Zoltowski, M.D., Wong, K.T.: ‘Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform rectangular array grid’, IEEE Trans. Signal Process., 2000, 48, (8), pp. 22052210 (doi: 10.1109/78.852001).
    10. 10)
      • 11. Wong, K.T., Zoltowski, M.D.: ‘Self-initiating MUSIC-based direction finding in underwater acoustic particle velocity-field beamspace’, IEEE J. Ocean. Eng., 2000, 25, (2), pp. 262273 (doi: 10.1109/48.838989).
    11. 11)
      • 7. Wu, Y.I., Wong, K.T.: ‘Acoustic near-field source localization by two passive anchor nodes’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (1), pp. 159169 (doi: 10.1109/TAES.2012.6129627).
    12. 12)
      • 15. El korso, M.N., Boyer, R., Renaux, A., Marcos, S.: ‘Conditional and unconditional Cramér-Rao bounds for near-field source localization’, IEEE Trans. Signal Process., 2010, 58, (5), pp. 29012907 (doi: 10.1109/TSP.2010.2043128).
    13. 13)
      • 10. Wong, K.T., Zoltowski, M.D.: ‘Closed-form underwater acoustic direction-finding with arbitrarily spaced vector-hydrophones at unknown locations’, IEEE J. Ocean. Eng., 1997, 22, (3), pp. 566575 (doi: 10.1109/48.611148).
    14. 14)
      • 9. Wong, K.T., Zoltowski, M.D.: ‘Root-MUSIC-based azimuth-elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones’, IEEE Trans. Signal Process., 1999, 47, (12), pp. 32503260 (doi: 10.1109/78.806070).
    15. 15)
      • 3. Liang, J., Liu, D.: ‘Passive localization of mixed near-field and far-field sources using two-stage MUSIC algorithm’, IEEE Trans. Signal Process., 2010, 58, (1), pp. 108119 (doi: 10.1109/TSP.2009.2029723).
    16. 16)
      • 6. Wu, Y.I., Wong, K.T., Lau, S.-K.: ‘The acoustic vector-sensor's near-field array-manifold’, IEEE Trans. Signal Process., 2010, 58, (7), pp. 39463951 (doi: 10.1109/TSP.2010.2047393).
    17. 17)
      • 16. Liang, J., Ji, B., Zhang, J., Zhao, F.: ‘A computationally efficient algorithm for joint range-DOA-frequency estimation of near-field sources’, Digit. Signal Process., 2009, 19, (4), pp. 596611 (doi: 10.1016/j.dsp.2008.06.006).
    18. 18)
      • 8. Tichavsky, P., Wong, K.T., Zoltowski, M.D.: ‘Near-field/far-field azimuth and elevation angle estimation using a single vector-hydrophone’, IEEE Trans. Signal Process., 2001, 49, (11), pp. 24982510 (doi: 10.1109/78.960397).
    19. 19)
      • 5. Grosicki, E., Abed-Meraim, K., Hua, Y.: ‘A weighted linear prediction method for near-field source localization’, IEEE Trans. Signal Process., 2005, 53, (10), pp. 36513660 (doi: 10.1109/TSP.2005.855100).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2012.0305
Loading

Related content

content/journals/10.1049/iet-rsn.2012.0305
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading