http://iet.metastore.ingenta.com
1887

Near-field source localisation using a velocity sensor array

Near-field source localisation using a velocity sensor array

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a new algorithm for near-field source localisation by using a uniform linear array consisting of velocity-sensor pairs (VSPs). Two schemes are used for range and direction of arrival (DOA) estimation in the proposed algorithm. The first one exploits the acoustic velocity vector field's two Cartesian components and the triangular location relationship among the near-field sources and the VSPs. The resulting range and DOA estimates are ambiguity-free, regardless of the inter-sensor spacing. Whereas the second scheme uses the so-called electric angles to determine the ranges and DOAs. Although the derived estimates may be ambiguous in the case of the inter-sensor spacing larger than a quarter wavelength, this ambiguity can be removed by using the estimates obtained in the first scheme. Therefore the proposed algorithm can offer high estimation accuracy by increasing inter-sensor spacing (because of array aperture extension). In addition, the proposed algorithm does not require multidimensional search, pairing parameters or high-order statistics, hence, has a low computational complexity.

References

    1. 1)
      • J.C. Chen , R.E. Hudson , Y. Kung .
        1. Chen, J.C., Hudson, R.E., Kung, Y.: ‘Maximum likelihood source localization and unknown sensor location estimation for wideband signals in the near-field’, IEEE Trans. Signal Process., 2002, 50, (8), pp. 18431854 (doi: 10.1109/TSP.2002.800420).
        . IEEE Trans. Signal Process. , 8 , 1843 - 1854
    2. 2)
      • W. Zhi , M.Y.W. Chia .
        2. Zhi, W., Chia, M.Y.W.: ‘Near-field source localization via symmetric subarrays’, IEEE Signal Process. Lett., 2007, 14, (6), pp. 409412 (doi: 10.1109/LSP.2006.888390).
        . IEEE Signal Process. Lett. , 6 , 409 - 412
    3. 3)
      • J. Liang , D. Liu .
        3. Liang, J., Liu, D.: ‘Passive localization of mixed near-field and far-field sources using two-stage MUSIC algorithm’, IEEE Trans. Signal Process., 2010, 58, (1), pp. 108119 (doi: 10.1109/TSP.2009.2029723).
        . IEEE Trans. Signal Process. , 1 , 108 - 119
    4. 4)
      • N. Yuen , B. Friedlander .
        4. Yuen, N., Friedlander, B.: ‘Performance analysis of higher order ESPRIT for localization of near-field sources’, IEEE Trans. Signal Process., 1998, 46, (3), pp. 709719 (doi: 10.1109/78.661337).
        . IEEE Trans. Signal Process. , 3 , 709 - 719
    5. 5)
      • E. Grosicki , K. Abed-Meraim , Y. Hua .
        5. Grosicki, E., Abed-Meraim, K., Hua, Y.: ‘A weighted linear prediction method for near-field source localization’, IEEE Trans. Signal Process., 2005, 53, (10), pp. 36513660 (doi: 10.1109/TSP.2005.855100).
        . IEEE Trans. Signal Process. , 10 , 3651 - 3660
    6. 6)
      • Y.I. Wu , K.T. Wong , S.-K. Lau .
        6. Wu, Y.I., Wong, K.T., Lau, S.-K.: ‘The acoustic vector-sensor's near-field array-manifold’, IEEE Trans. Signal Process., 2010, 58, (7), pp. 39463951 (doi: 10.1109/TSP.2010.2047393).
        . IEEE Trans. Signal Process. , 7 , 3946 - 3951
    7. 7)
      • Y.I. Wu , K.T. Wong .
        7. Wu, Y.I., Wong, K.T.: ‘Acoustic near-field source localization by two passive anchor nodes’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (1), pp. 159169 (doi: 10.1109/TAES.2012.6129627).
        . IEEE Trans. Aerosp. Electron. Syst. , 1 , 159 - 169
    8. 8)
      • P. Tichavsky , K.T. Wong , M.D. Zoltowski .
        8. Tichavsky, P., Wong, K.T., Zoltowski, M.D.: ‘Near-field/far-field azimuth and elevation angle estimation using a single vector-hydrophone’, IEEE Trans. Signal Process., 2001, 49, (11), pp. 24982510 (doi: 10.1109/78.960397).
        . IEEE Trans. Signal Process. , 11 , 2498 - 2510
    9. 9)
      • K.T. Wong , M.D. Zoltowski .
        9. Wong, K.T., Zoltowski, M.D.: ‘Root-MUSIC-based azimuth-elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones’, IEEE Trans. Signal Process., 1999, 47, (12), pp. 32503260 (doi: 10.1109/78.806070).
        . IEEE Trans. Signal Process. , 12 , 3250 - 3260
    10. 10)
      • K.T. Wong , M.D. Zoltowski .
        10. Wong, K.T., Zoltowski, M.D.: ‘Closed-form underwater acoustic direction-finding with arbitrarily spaced vector-hydrophones at unknown locations’, IEEE J. Ocean. Eng., 1997, 22, (3), pp. 566575 (doi: 10.1109/48.611148).
        . IEEE J. Ocean. Eng. , 3 , 566 - 575
    11. 11)
      • K.T. Wong , M.D. Zoltowski .
        11. Wong, K.T., Zoltowski, M.D.: ‘Self-initiating MUSIC-based direction finding in underwater acoustic particle velocity-field beamspace’, IEEE J. Ocean. Eng., 2000, 25, (2), pp. 262273 (doi: 10.1109/48.838989).
        . IEEE J. Ocean. Eng. , 2 , 262 - 273
    12. 12)
      • M.D. Zoltowski , K.T. Wong .
        12. Zoltowski, M.D., Wong, K.T.: ‘Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform rectangular array grid’, IEEE Trans. Signal Process., 2000, 48, (8), pp. 22052210 (doi: 10.1109/78.852001).
        . IEEE Trans. Signal Process. , 8 , 2205 - 2210
    13. 13)
      • K.T. Wong , M.D. Zoltowski .
        13. Wong, K.T., Zoltowski, M.D.: ‘Extended-aperture under water acoustic multi-source azimuth/elevation direction-finding using uniformly but sparsely spaced vector hydrophones’, IEEE J. Ocean. Eng., 1997, 22, (4), pp. 659672 (doi: 10.1109/48.650832).
        . IEEE J. Ocean. Eng. , 4 , 659 - 672
    14. 14)
      • J. He , M.N.S. Swamy , M. Omair Ahmad .
        14. He, J., Swamy, M.N.S., Omair Ahmad, M.: ‘Joint DOD and DOA estimation for MIMO array with velocity receive sensors’, IEEE Signal Process. Lett., 2011, 18, (7), pp. 399402 (doi: 10.1109/LSP.2011.2152393).
        . IEEE Signal Process. Lett. , 7 , 399 - 402
    15. 15)
      • M.N. El korso , R. Boyer , A. Renaux , S. Marcos .
        15. El korso, M.N., Boyer, R., Renaux, A., Marcos, S.: ‘Conditional and unconditional Cramér-Rao bounds for near-field source localization’, IEEE Trans. Signal Process., 2010, 58, (5), pp. 29012907 (doi: 10.1109/TSP.2010.2043128).
        . IEEE Trans. Signal Process. , 5 , 2901 - 2907
    16. 16)
      • J. Liang , B. Ji , J. Zhang , F. Zhao .
        16. Liang, J., Ji, B., Zhang, J., Zhao, F.: ‘A computationally efficient algorithm for joint range-DOA-frequency estimation of near-field sources’, Digit. Signal Process., 2009, 19, (4), pp. 596611 (doi: 10.1016/j.dsp.2008.06.006).
        . Digit. Signal Process. , 4 , 596 - 611
    17. 17)
      • A.N. Lemma , A. van der Veen , E.F. Deprettere .
        17. Lemma, A.N., van der Veen, A., Deprettere, E.F.: ‘Analysis of joint angle-frequency estimation using ESPRIT’, IEEE Trans. Signal Process., 2003, 51, (5), pp. 12641283 (doi: 10.1109/TSP.2003.810306).
        . IEEE Trans. Signal Process. , 5 , 1264 - 1283
    18. 18)
      • K. Abed-Meraim , Y. Hua .
        18. Abed-Meraim, K., Hua, Y.: ‘3-D near field source localization using second order statistics’. Proc. 31st Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, California, USA, 1997, (2), pp. 13071311.
        . Proc. 31st Asilomar Conf. Signals, Systems, and Computers, Pacific Grove , 2 , 1307 - 1311
    19. 19)
      • J. Liang , D. Liu , X. Zeng , W. Wang , J. Zhang , H. Chen .
        19. Liang, J., Liu, D., Zeng, X., Wang, W., Zhang, J., Chen, H.: ‘Joint azimuth-elevation/(-range) estimation of mixed near-field and far-field sources using two-stage separated steering vector-based algorithm’, Prog. Electromagn. Res., 2011, 113, pp. 1746.
        . Prog. Electromagn. Res. , 17 - 46
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2012.0305
Loading

Related content

content/journals/10.1049/iet-rsn.2012.0305
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address