access icon free Reconfigurable sum–difference pattern by means of parasitic elements for forward-looking monopulse radar

This study describes the design of forward-looking monopulse arrays able to reconfigure the radiation pattern from the sum mode to the difference one by electronically switching a set of parasitic dipoles placed in front of a driven array of radiating dipoles. The antenna architecture is synthesised by optimising the geometric parameters of the passive elements, namely their positions and lengths. The generation of the difference beam is yielded by imposing a phase displacement of π to the excitations of half active array and activating the parasitic array by turning-on the switches that partition their lengths. As for the sum pattern, the effect of the parasitic dipoles is made negligible by turning-off the switches. A set of representative results is reported and discussed to show the effectiveness of the proposed approach.

Inspec keywords: switches; electronic switching systems; antenna radiation patterns; radar antennas; passive radar; dipole antenna arrays

Other keywords: reconfigurable sum-difference pattern; geometric parameter; forward looking monopulse radar; phase displacement; forward looking monopulse array; parasitic array; antenna architecture; electronic switching; passive element; difference beam generation; parasitic element; parasitic dipole; switches; antenna radiation pattern

Subjects: Communication switching; Relays and switches; Antenna arrays; Radar equipment, systems and applications; Electronic switching systems and exchanges

References

    1. 1)
      • 9. Rocca, P., Manica, L., Azaro, R., Massa, A.: ‘A hybrid approach to the synthesis of subarrayed monopulse linear arrays’, IEEE Trans. Antennas Propag., 2009, 57, (1), pp. 280283 (doi: 10.1109/TAP.2008.2009776).
    2. 2)
      • 2. Sherman, S.M.: ‘Monopulse principles and techniques’ (Artech House, 1984).
    3. 3)
      • 10. Alvarez, M., Rodriguez, J.A., Ares, F.: ‘Synthesising Taylor and Bayliss linear distributions with common aperture tail’, Electron. Lett., 2009, 45, (1), pp. 1819 (doi: 10.1049/el:20093322).
    4. 4)
      • 21. Balanis, C.A.: ‘Antenna theory: analysis and design’ (John Wiley & Sons., 1997).
    5. 5)
      • 23. Ares, F., Franceschetti, G., Rodriguez, J.A.: ‘A simple alternative for beam reconfiguration of array antennas’, Prog. Electromag. Res., 2008, 88, pp. 227240 (doi: 10.2528/PIER08110303).
    6. 6)
      • 8. Manica, L., Rocca, P., Martini, A., Massa, A.: ‘An innovative approach based on a tree-searching algorithm for the optimal matching of independently optimum sum and difference excitations’, IEEE Trans. Antennas Propag., 2008, 56, (1), pp. 5866 (doi: 10.1109/TAP.2007.913037).
    7. 7)
      • 22. Vescovo, R.: ‘Reconfigurability and beam scanning with phase-only control for antenna arrays’, IEEE Trans. Antennas Propag., 2008, 56, (6), pp. 15551565 (doi: 10.1109/TAP.2008.923297).
    8. 8)
      • 14. Rodriguez, J.A., Trastoy, A., Brégains, J.C., Ares, F., Franceschetti, G.: ‘Beam reconfiguration of linear arrays using parasitic elements’, Electron. Lett., 2006, 42, (3), pp. 131136 (doi: 10.1049/el:20063674).
    9. 9)
      • 7. Chen, Y., Yang, S., Nie, Z.: ‘The application of a modified differential evolution strategy to some array pattern synthesis problems’, IEEE Trans. Antennas Propag., 2008, 56, (7), pp. 19191927 (doi: 10.1109/TAP.2008.924713).
    10. 10)
      • 12. Elliott, R.S.: ‘Antenna theory and design’ (Wiley-Interscience IEEE Press, 2003).
    11. 11)
      • 3. Grimes, D.M., Grimes, C.A.: ‘Cradar – an open-loop extended-monopulse automotive radar’, IEEE Trans. Veh. Technol., 1989, 38, (3), pp. 123131 (doi: 10.1109/25.45465).
    12. 12)
      • 20. Bucci, O.M., D'Urso, M., Isernia, T.: ‘Optimal synthesis of difference patterns subject to arbitrary sidelobe bounds by using arbitrary array antennas’, IEE Proc. Microw. Antennas Propag., 2005, 152, (3), pp. 129137 (doi: 10.1049/ip-map:20045073).
    13. 13)
      • 17. Dolph, C.L.: ‘A current distribution for broadside arrays which optimises the relationship between beam width and sidelobe level’, Proc. IRE, 1946, 34, pp. 335348 (doi: 10.1109/JRPROC.1946.225956).
    14. 14)
      • 28. Rocca, P., Benedetti, M., Donelli, M., Franceschini, D., Massa, A.: ‘Evolutionary optimization as applied to inverse scattering problems’, Inverse Probl., 2009, 24, pp. 141.
    15. 15)
      • 11. Morabito, A.F., Rocca, P.: ‘Optimal synthesis of sum and difference patterns with arbitrary sidelobes subject to common excitations constraints’, IEEE Antennas Wirel. Propag. Lett., 2010, 9, pp. 623626 (doi: 10.1109/LAWP.2010.2053832).
    16. 16)
      • 16. Bayliss, E.T.: ‘Design of monopulse antenna difference patterns with low sidelobes’, Bell Syst. Tech. J., 1968, 47, pp. 623640 (doi: 10.1002/j.1538-7305.1968.tb00056.x).
    17. 17)
      • 18. Bucci, O.M., Caccavale, L., Isernia, T.: ‘Optimal far-field focusing of uniformly spaced arrays subject to arbitrary upper bounds in non-target directions’, IEEE Trans. Antennas Propag., 2002, 50, (11), pp. 15391554 (doi: 10.1109/TAP.2002.803959).
    18. 18)
      • 5. Lopez, P., Rodriguez, J.A., Ares, F., Moreno, E.: ‘Subarray weighting for difference patterns of monopulse antennas: joint optimization of subarray configurations and weights’, IEEE Trans. Antennas Propag., 2001, 49, (11), pp. 16061608 (doi: 10.1109/8.964098).
    19. 19)
      • 6. D'Urso, M., Isernia, T., Meliado’, E.F.: ‘An effective hybrid approach for the optimal synthesis of monopulse antennas’, IEEE Trans. Antennas Propag., 2007, 55, (4), pp. 10591066 (doi: 10.1109/TAP.2007.893374).
    20. 20)
      • 25. Boutayeb, H., Denidni, T.A., Mahdjoubi, K., Tarot, A.-C., Sebak, A.-R., Talbi, L.: ‘Analysis and design of a cylindrical EBG-based directive antenna’, IEEE Trans. Antennas Propag., 2006, 54, (1), pp. 211219 (doi: 10.1109/TAP.2005.861560).
    21. 21)
      • 24. Hansen, R.C.: ‘Formulation of echelon dipole mutual impedance for computer’, IEEE Trans. Antennas Propag., 1972, 20, (6), pp. 780781 (doi: 10.1109/TAP.1972.1140321).
    22. 22)
      • 15. Taylor, T.T.: ‘Design of line-source antennas for narrow beam-width and low side lobes’, Trans. IRE Antennas Propag., 1955, 3, (1), pp. 1628 (doi: 10.1109/TPGAP.1955.5720407).
    23. 23)
      • 19. McNamara, D.A.: ‘Discrete n-distributions for difference patterns’, Electron. Lett., 1986, 22, (6), pp. 303304 (doi: 10.1049/el:19860207).
    24. 24)
      • 26. Zhang, S., Huff, G.H., Feng, J., Bernhard, J.T.: ‘A pattern reconfigurable microstrip parasitic array’, IEEE Trans. Antennas Propag., 2004, 52, (10), pp. 27732776 (doi: 10.1109/TAP.2004.834372).
    25. 25)
      • 1. Skolnik, I.M.: ‘Radar handbook’ (McGraw-Hill, 2008, 3rd edn.).
    26. 26)
      • 27. Petit, L., Dussopt, L., Laheurte, J.-M.: ‘MEMS-switched parasitic-antenna array for radiation pattern diversity’, IEEE Trans. Antennas Propag., 2006, 54, (9), pp. 26242631 (doi: 10.1109/TAP.2006.880751).
    27. 27)
      • 13. Kennedy, J., Eberhart, R.C., Shi, Y.: ‘Swarm intelligence’ (Morgan Kaufmann, 2001).
    28. 28)
      • 4. Hansen, T.B., Oristaglio, M.L.: ‘Method for controlling the angular extent of interrogation zones in RFID’, IEEE Antennas Wirel. Propag. Lett., 2006, 5, pp. 134137 (doi: 10.1109/LAWP.2006.873936).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2012.0300
Loading

Related content

content/journals/10.1049/iet-rsn.2012.0300
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading