access icon free New scaling function processing approach for mono-static terrain imaging radar

To increase the mobility of an unmanned ground vehicle, this study describes new approach to detect targets in front of mono-static terrain imaging radar (TIR), which is a prototypical ground-based forward looking radar. Since the TIR employs a mono-static configuration and a real aperture antenna array, the conventional back-projection method is very useful in spite of its poor processing time. However, it is difficult to employ another method because the TIR is an ultra-wide-band type of radar and employs a dechirp-on-receive process. To overcome these difficulties, a new approach based on scaling function processing is proposed in this study. This scaling function is based on a spectral analysis approach and the proposed method conducts range cell migration compensation, secondary range compression and azimuth compression using this scaling function. In this study, the complete derivation of the proposed method is presented. A very useful formulation for a dechirped mono-static radar signal in the range Doppler domain is also proposed, in which the signal is expressed by the scaling function. The results of simulations and field tests are demonstrated to show the performance and validity of the proposed method.

Inspec keywords: antenna arrays; radar antennas; Doppler radar; radar imaging; aperture antennas; remotely operated vehicles; terrain mapping

Other keywords: monostatic terrain imaging radar; aperture antenna array; mobility; TIR; conventional back-projection method; Doppler domain; secondary range compression; ultrawideband type; scaling function processing approach; unmanned ground vehicle; cell migration compensation; spectral analysis approach; azimuth compression

Subjects: Optical, image and video signal processing; Geophysical techniques and equipment; Radar equipment, systems and applications; Antenna arrays

References

    1. 1)
      • 5. Cumming, I., Wong, F.: ‘Digital processing of sysnthetic aperture radar data: algorithms and implementation’ (Artech House, Boston, 2005).
    2. 2)
      • 11. Qiu, X., Hu, D., Ding, C.: ‘An improved NLCS algorithm with capability analysis for one-stationary BiSAR’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (10), pp. 31793186 (doi: 10.1109/TGRS.2008.921569).
    3. 3)
      • 10. Mittermayer, J., Moreira, A., Loffeld, O.: ‘Spotlight SAR data processing using the frequency scaling algorithm’, IEEE Trans. Geosci. Remote Sens., 1999, 37, (5), pp. 21982214 (doi: 10.1109/36.789617).
    4. 4)
      • 13. Moreira, A., Huang, Y.: ‘Airbone SAR processing of highly squinted data using a chirp scaling algorithm with integrated motion compensation’, IEEE Trans. Geosci. Remote Sens., 1994, 32, pp. 10291040 (doi: 10.1109/36.312891).
    5. 5)
      • 8. Frey, O., Meier, E.H., Nuesch, D.R.: ‘Processing SAR data of rugged terrain by time-domain back-projection’. Proc. SPIE 5980, October 2005, p. 598007.
    6. 6)
      • 6. Jungang, Y., Xiaotao, H., Thompson, J., Tian, J., Zhimin, Z.: ‘Low-frequency ultra-wideband synthetic aperture radar ground moving target imaging’, IET Radar Sonar Navig., 2011, 5, pp. 9941001 (doi: 10.1049/iet-rsn.2010.0387).
    7. 7)
      • 2. Ulaby, F.T., Wilson, E.A.: ‘Microwave attenuation properties of vegetation canopies’, IEEE Trans. Geosci. Remote Sens., 1985, GE-23, (5), pp. 746753 (doi: 10.1109/TGRS.1985.289393).
    8. 8)
      • 7. Yuan, Y., Sun, J., Mao, S.: ‘PFA algorithm for airborne spotlight SAR imaging with nonideal motions’, IEE Proc. Radar Sonar Navig., 2002, 4, pp. 174182 (doi: 10.1049/ip-rsn:20020493).
    9. 9)
      • 3. Ressler, M., Nguyen, L., Koenig, F., Wong, D., Smith, G.: ‘The Army Research Laboratory (ARL) synchronous impulse reconstruction (SIRE) forward looking radar’. Proc. SPIE, 2007, vol. 6561, pp. 656105-1656105-12.
    10. 10)
      • 9. Yang, Y., Pi, Y., Li, R.: ‘Back projection algorithm for spotlight bistatic SAR imaging’. Int. Conf. Radar, 2006 (CIE’06), October 2006, pp. 14.
    11. 11)
      • 12. Carrara, G., Goodman, R.S., Majewski, R.M.: ‘Spotlight synthetic aperture radar’ (Artech House, Norwood, MA, 1995).
    12. 12)
      • 1. Nguyen, L., Wong, D., Stanton, B., Smith, G.: ‘Forward imaging for obstacle avoidance using ultra-wideband synthetic aperture radar’. Proc. SPIE, 2003, vol. 5083, pp. 519528.
    13. 13)
      • 14. Raney, R.K., Runge, H., Bamler, R., Cumming, I., Wong, F.: ‘Precision SAR processing without interpolation for range cell migration correction’, IEEE Trans. Geosci. Remote Sens., 1994, 32, pp. 786799 (doi: 10.1109/36.298008).
    14. 14)
      • 4. Krieger, G., Mittermayer, J., Buckreuss, S., et al: ‘Sector imaging radar for enhance vision’, Aerosp. Sci. Technol., 2002, 7, pp. 147158 (doi: 10.1016/S1270-9638(02)01189-6).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2012.0297
Loading

Related content

content/journals/10.1049/iet-rsn.2012.0297
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading