http://iet.metastore.ingenta.com
1887

New scaling function processing approach for mono-static terrain imaging radar

New scaling function processing approach for mono-static terrain imaging radar

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

To increase the mobility of an unmanned ground vehicle, this study describes new approach to detect targets in front of mono-static terrain imaging radar (TIR), which is a prototypical ground-based forward looking radar. Since the TIR employs a mono-static configuration and a real aperture antenna array, the conventional back-projection method is very useful in spite of its poor processing time. However, it is difficult to employ another method because the TIR is an ultra-wide-band type of radar and employs a dechirp-on-receive process. To overcome these difficulties, a new approach based on scaling function processing is proposed in this study. This scaling function is based on a spectral analysis approach and the proposed method conducts range cell migration compensation, secondary range compression and azimuth compression using this scaling function. In this study, the complete derivation of the proposed method is presented. A very useful formulation for a dechirped mono-static radar signal in the range Doppler domain is also proposed, in which the signal is expressed by the scaling function. The results of simulations and field tests are demonstrated to show the performance and validity of the proposed method.

References

    1. 1)
      • L. Nguyen , D. Wong , B. Stanton , G. Smith .
        1. Nguyen, L., Wong, D., Stanton, B., Smith, G.: ‘Forward imaging for obstacle avoidance using ultra-wideband synthetic aperture radar’. Proc. SPIE, 2003, vol. 5083, pp. 519528.
        . Proc. SPIE , 519 - 528
    2. 2)
      • F.T. Ulaby , E.A. Wilson .
        2. Ulaby, F.T., Wilson, E.A.: ‘Microwave attenuation properties of vegetation canopies’, IEEE Trans. Geosci. Remote Sens., 1985, GE-23, (5), pp. 746753 (doi: 10.1109/TGRS.1985.289393).
        . IEEE Trans. Geosci. Remote Sens. , 5 , 746 - 753
    3. 3)
      • M. Ressler , L. Nguyen , F. Koenig , D. Wong , G. Smith .
        3. Ressler, M., Nguyen, L., Koenig, F., Wong, D., Smith, G.: ‘The Army Research Laboratory (ARL) synchronous impulse reconstruction (SIRE) forward looking radar’. Proc. SPIE, 2007, vol. 6561, pp. 656105-1656105-12.
        . Proc. SPIE , 656105 - 656101
    4. 4)
      • G. Krieger , J. Mittermayer , S. Buckreuss .
        4. Krieger, G., Mittermayer, J., Buckreuss, S., et al: ‘Sector imaging radar for enhance vision’, Aerosp. Sci. Technol., 2002, 7, pp. 147158 (doi: 10.1016/S1270-9638(02)01189-6).
        . Aerosp. Sci. Technol. , 147 - 158
    5. 5)
      • I. Cumming , F. Wong . (2005)
        5. Cumming, I., Wong, F.: ‘Digital processing of sysnthetic aperture radar data: algorithms and implementation’ (Artech House, Boston, 2005).
        .
    6. 6)
      • Y. Jungang , H. Xiaotao , J. Thompson , J. Tian , Z. Zhimin .
        6. Jungang, Y., Xiaotao, H., Thompson, J., Tian, J., Zhimin, Z.: ‘Low-frequency ultra-wideband synthetic aperture radar ground moving target imaging’, IET Radar Sonar Navig., 2011, 5, pp. 9941001 (doi: 10.1049/iet-rsn.2010.0387).
        . IET Radar Sonar Navig. , 994 - 1001
    7. 7)
      • Y. Yuan , J. Sun , S. Mao .
        7. Yuan, Y., Sun, J., Mao, S.: ‘PFA algorithm for airborne spotlight SAR imaging with nonideal motions’, IEE Proc. Radar Sonar Navig., 2002, 4, pp. 174182 (doi: 10.1049/ip-rsn:20020493).
        . IEE Proc. Radar Sonar Navig. , 174 - 182
    8. 8)
      • O. Frey , E.H. Meier , D.R. Nuesch .
        8. Frey, O., Meier, E.H., Nuesch, D.R.: ‘Processing SAR data of rugged terrain by time-domain back-projection’. Proc. SPIE 5980, October 2005, p. 598007.
        . Proc. SPIE 5980 , 598007
    9. 9)
      • Y. Yang , Y. Pi , R. Li .
        9. Yang, Y., Pi, Y., Li, R.: ‘Back projection algorithm for spotlight bistatic SAR imaging’. Int. Conf. Radar, 2006 (CIE’06), October 2006, pp. 14.
        . Int. Conf. Radar, 2006 (CIE’06) , 1 - 4
    10. 10)
      • J. Mittermayer , A. Moreira , O. Loffeld .
        10. Mittermayer, J., Moreira, A., Loffeld, O.: ‘Spotlight SAR data processing using the frequency scaling algorithm’, IEEE Trans. Geosci. Remote Sens., 1999, 37, (5), pp. 21982214 (doi: 10.1109/36.789617).
        . IEEE Trans. Geosci. Remote Sens. , 5 , 2198 - 2214
    11. 11)
      • X. Qiu , D. Hu , C. Ding .
        11. Qiu, X., Hu, D., Ding, C.: ‘An improved NLCS algorithm with capability analysis for one-stationary BiSAR’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (10), pp. 31793186 (doi: 10.1109/TGRS.2008.921569).
        . IEEE Trans. Geosci. Remote Sens. , 10 , 3179 - 3186
    12. 12)
      • G. Carrara , R.S. Goodman , R.M. Majewski . (1995)
        12. Carrara, G., Goodman, R.S., Majewski, R.M.: ‘Spotlight synthetic aperture radar’ (Artech House, Norwood, MA, 1995).
        .
    13. 13)
      • A. Moreira , Y. Huang .
        13. Moreira, A., Huang, Y.: ‘Airbone SAR processing of highly squinted data using a chirp scaling algorithm with integrated motion compensation’, IEEE Trans. Geosci. Remote Sens., 1994, 32, pp. 10291040 (doi: 10.1109/36.312891).
        . IEEE Trans. Geosci. Remote Sens. , 1029 - 1040
    14. 14)
      • R.K. Raney , H. Runge , R. Bamler , I. Cumming , F. Wong .
        14. Raney, R.K., Runge, H., Bamler, R., Cumming, I., Wong, F.: ‘Precision SAR processing without interpolation for range cell migration correction’, IEEE Trans. Geosci. Remote Sens., 1994, 32, pp. 786799 (doi: 10.1109/36.298008).
        . IEEE Trans. Geosci. Remote Sens. , 786 - 799
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2012.0297
Loading

Related content

content/journals/10.1049/iet-rsn.2012.0297
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address