Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Discrete chirp-Fourier transform-based acquisition algorithm for weak global positioning system L5 signals in high dynamic environments

For the acquisition of weak global positioning system L5 signals in high dynamic environments, coherent integration time is necessarily extended for signal-to-noise ratio improvement. However, the incidental problems, such as high-rate sign transitions, tiered codes and particularly the concurrence of Doppler shift and Doppler rate, will bring challenges to the acquisition. This study proposes a novel acquisition algorithm based on the discrete chirp-Fourier transform (DCFT) to solve the problems above. The 1 ms complex correlation is modelled as a chirp signal to account for high dynamics effect. Then the DCFT is introduced to simultaneously estimate the Doppler shift and Doppler rate residuals. In this way, the 1 ms complex correlations are coherently post-integrated and a high processing gain can be obtained when both the primary and secondary code phases are aligned. Furthermore, the false alarm and detection probabilities are derived to statistically characterise the acquisition performance. Simulation results demonstrate that the proposed algorithm is tolerant of high dynamics and robust to noise. Specifically, it can acquire the L5 signal with up to 20 g acceleration and only 25 dB Hz carrier-to-noise ratio, which is impossible for the conventional fast Fourier transform scheme.

References

    1. 1)
      • 1. Tran, M., Hegarty, C.: ‘Performance evaluations of the new GPS L5 and L2 Civil (L2C) signals’, J. Inst. Navig., 2004, 51, (3), pp. 199212.
    2. 2)
      • 17. Mongredien, C.: ‘GPS L5 software receiver development for high-accuracy applications’. PhD thesis, University of Calgary, 2008.
    3. 3)
      • 5. Xie, G.: ‘Principles of GPS and receiver design (in Chinese)’ (Publishing House of Electronics Industry, 2009, 1st edn.).
    4. 4)
      • 29. Lin, J.C.: ‘Differentially coherent PN code acquisition with full-period correlation in chip-synchronous DS/SS receiver’, IEEE Trans. Commun., 2002, 50, (5), pp. 698702.
    5. 5)
      • 18. Shanmugam, S.K.: ‘New enhanced sensitivity detection techniques for GPS L1 C/A and modernized signal acquisition’. PhD thesis, University of Calgary, 2008.
    6. 6)
      • 32. Guo, X., Sun, H.B., Wang, S.L.: ‘Comments on discrete chirp-Fourier transform and its application to chirp rate estimation’, IEEE Trans. Signal Process., 2002, 50, (12), pp. 31153116 (doi: 10.1109/TSP.2002.805492).
    7. 7)
      • 10. Yang, C., Hegarty, C., Tran, M.: ‘Acquisition of the GPS L5 signal using coherent combining of I5 and Q5’. Proc. ION GNSS 17th Int. Technical Meeting, Long Beach, CA, 2004, pp. 21842195.
    8. 8)
      • 24. Alkopian, D.: ‘Fast FFT based GPS satellite acquisition methods’, IEE Proc. Radar Sonar Navig., 2005, 152, (4), pp. 277286.
    9. 9)
      • 7. Bastide, F., Macabiau, C., Akos, D., Roturier, B.: ‘Assessment of L5 receiver performance in presence of interference using a realistic receiver simulator’. Proc. ION GPS/GNSS, Portland, OR, September 2003, pp. 142152.
    10. 10)
      • 22. Van Nee, D.J.R., Coenen, A.J.R.M.: ‘New fast GPS code-acquisition technique using FFT’, IEEE Electron. Lett., 1991, 27, (2), pp. 158160 (doi: 10.1049/el:19910102).
    11. 11)
      • 16. Mongredien, C., Lachapelle, G., Cannon, M.E.: ‘Testing GPS L5 acquisition and tracking algorithms using a hardware simulator’. Proc. ION GNSS 19th Int. Technical Meeting, Fort Worth, TX, 2006, pp. 29012913.
    12. 12)
      • 4. Groves, P.D.: ‘Principles of GNSS inertial and multisensor integrated navigation systems’ (Artech House Publishers, 2008, 1st edn.).
    13. 13)
      • 31. Xia, X.G.: ‘Discrete chirp-Fourier transform and its application to chirp rate estimation’, IEEE Trans. Signal sProcess., 2000, 48, (11), pp. 31223133 (doi: 10.1109/78.875469).
    14. 14)
      • 35. Wu, L., Wei, X.Z., Yang, D.G., et al: ‘ISAR imaging of targets with complex motion based on discrete chirp Fsourier transform for cubic chirps’, IEEE Trans. Geosci. Remote Sens., 2012, PP, (99), pp. 112.
    15. 15)
      • 11. Borio, D., O'Driscoll, C., Lachapelle, G.: ‘Composite GNSS signal acquisition over multiple code periods’, IEEE Trans. Aerosp. Electron. Syst., 2010, 46, (1), pp. 193206 (doi: 10.1109/TAES.2010.5417156).
    16. 16)
      • 27. Zarrabizadeh, M.H., Sousa, E.S.: ‘A differentially coherent PN code acquisition receiver for CDMA systems’, IEEE Trans. Commun., 1997, 45, (11), pp. 14561465 (doi: 10.1109/26.649772).
    17. 17)
      • 36. Su, Y.T., Wu, R.C.: ‘Frequency acquisition and tracking in high dynamic environments’, IEEE Trans. Veh. Technol., 2000, 49, (6), pp. 24192429 (doi: 10.1109/25.901910).
    18. 18)
      • 21. Bastide, F., Julien, O., Maeabiau, C.: ‘Analysis of L5/E5 acquisition, tracking and data demodulation’. Proc. ION GPS 15th Int. Technical Meeting, Portland, OR, 2002, pp. 21962207.
    19. 19)
      • 15. Macabiau, C., Ries, L., Bastide, F., Isser, J.L.: ‘GPS L5 receiver implementation issues’. Proc. ION GPS/GNSS 16th Int. Technical Meeting, Portland, OR, 2003, pp. 153164.
    20. 20)
      • 37. Hegarty, C.J.: ‘Optimal and near-optimal detector for acquisition of the GPS L5 signal’. Proc. ION NTM, Monterey, CA, 2006, pp. 717725.
    21. 21)
      • 38. Aceros-Moreno, C.A., Rodrigurez, D.: ‘Fast discrete chirp Fourier transform for radar signal detection systems using cluster computer implementations’. Proc. 48th Midwest Symp. Circuits System, 2005, pp. 10471050.
    22. 22)
      • 13. Borio, D.: ‘M-Sequence and secondary code constraints for gnss signal acquisition’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (2), pp. 928945 (doi: 10.1109/TAES.2011.5751235).
    23. 23)
      • 33. Xia, X.G.: ‘Response to comments on discrete chirp-Fourier transform and its application to chirp rate estimation’, IEEE Trans. Signal Process., 2002, 50, (12), p. 3116.
    24. 24)
      • 25. Sun, C.C., Jan, S.S.: ‘GNSS signal acquisition and tracking using a parallel approach’. Proc. IEEE/ION PLAN, Tainan, 2008, pp. 13321340.
    25. 25)
      • 6. Hegarty, C., Van Dierendonck, A.J., Bobyn, D.: ‘Suppression of pulsed interference through blanking’. Proc. ION AM, San Diego, CA, June 2000, pp. 399408.
    26. 26)
      • 28. Dafesh, P.A., Holmes, J.K.: ‘Practical and theoretical tradeoffs of active parallel correlator and passive matched filter acquisition implementations’. Proc. ION AM, San Diego, CA, 2000, pp. 352367.
    27. 27)
      • 20. Ries, L., Macabiau, C., Nouvel, O.: ‘A Software Receiver for GPS-IIF L5 Signal’. Proc. ION GPS 15th International Technical Meeting, Portland, OR, 2002, pp. 15401553.
    28. 28)
      • 19. Borio, D., Mongredien, C., Lachapelle, G.: ‘New L5/E5a acquisition algorithms: analysis and comparison’. IEEE 10th Int. Symp. Spectrum Techniques and Applications, Bologna, Italy, 2008, pp. 4852.
    29. 29)
      • 8. Presti, L.L., Zhu, X.F., Fantino, M.: ‘GNSS signal acquisition in the presence of sign transitions’, IEEE J. Sel. Top. Signal Process., 2009, 3, (4), pp. 557570 (doi: 10.1109/JSTSP.2009.2024592).
    30. 30)
      • 3. Kaplan, E.D., Hegarty, C.J.: ‘Understanding GPS: principles and applications’ (Artech House Publishers, 2006, 2nd edn.).
    31. 31)
      • 34. Fan, P., Xia, X.G.: ‘Two modified discrete chirp-Fourier transform schemes’, Sci. China, F, 2001, 44, (5), pp. 329341.
    32. 32)
      • 30. Lin, J.C.: ‘Differentially coherent PN code acquisition based on a matched filter for chip-asynchronous DS/SS communications’, IEEE Trans. Veh. Technol., 2002, 51, (6), pp. 15961599 (doi: 10.1109/TVT.2002.804867).
    33. 33)
      • 14. Hegarty, C., Tran, M., Van Dierendonck, A.J.: ‘Acquisition algorithms for the GPS L5 signal’. Proc. ION GPS/GNSS 16th Int. Technical Meeting, Portland, OR, 2003, pp. 165177.
    34. 34)
      • 12. Borio, D.: ‘FFT sign search with secondary code constraints for GNSS signal acquisition’. Vehicular Technology Conf., Calgary, CA, 2008, pp. 15.
    35. 35)
      • 9. Sun, K.: ‘Composite GNSS signal acquisition in presence of data sign transition’. Int. Conf. Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 2010, pp. 19.
    36. 36)
      • 26. O'Driscoll, C.: ‘Performance analysis of the parallel acquisition of weak GPS signals’. PhD thesis, University College Cork, 2007.
    37. 37)
      • 23. Psiaki, M.L.: ‘Block acquisition of weak GPS signals in a software receiver’. Proc. ION GPS 14th Int. Technical Meeting, Salt Lake City, USA, 2001, pp. 28382850.
    38. 38)
      • 2. GPS Joint Program Office: ‘Interface specification NAVSTAR GPS space segment/navigation L5 user interfaces’, Technical report IS-GPS-705, 2005.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2012.0249
Loading

Related content

content/journals/10.1049/iet-rsn.2012.0249
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address