http://iet.metastore.ingenta.com
1887

Real time estimation of slant path tropospheric delay at very low elevation based on singular ground-based global positioning system station

Real time estimation of slant path tropospheric delay at very low elevation based on singular ground-based global positioning system station

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Real time slant path tropospheric delay (STD) is of benefit in near real-time weather forecasting, climatologic applications, and reconstructing refractivity profile. For low elevation ( < 5°), the traditional method precision of calculating STD is poor. A new method of estimating real-time STD at very low elevation (0° − 5°), which is based on singular ground-based Global Positioning System (GPS) with International GPS Service ultra-rapid product, is presented in this study. An experiment was carried out to validate the feasibility on an island in Shantou, south China during July 2009. Results from radiosondes, GPS and models are compared and show that GPS-derived results have agreement with those from radiosonde for low elevation ( < 5°). Consequently, the method can potentially offset some drawbacks of traditional method, and even may be used for monitoring the troposphere without radiosondes in some aspects in the future.

References

    1. 1)
      • J.d. Vries . (2006)
        1. Vries, J.d.: ‘Validation and error modeling of GPS tropospheric slant delays’, Netherlands, Available as TOUGH project deliverable no D37, at http://tough.dmi.dk, 2006.
        .
    2. 2)
      • K.D. Anderson .
        2. Anderson, K.D.: ‘Tropospheric refractivity profiles inferred from low elevation angle measurements of Global Positioning System (GPS) signals’. AGARD Conf. Proc., 1994, vol. 567, pp. 16.
        . AGARD Conf. Proc. , 1 - 6
    3. 3)
      • A. Flores , G. Ruffini , A. Rius .
        3. Flores, A., Ruffini, G., Rius, A.: ‘4D tropospheric tomography using GPS slant wet delays’, Ann. Geophys., 2000, 18, pp. 223234 (doi: 10.1007/s00585-000-0223-7).
        . Ann. Geophys. , 223 - 234
    4. 4)
      • J. Braun , C. Rocken , R. Ware .
        4. Braun, J., Rocken, C., Ware, R.: ‘Validation of line-of-sight water vapor measurements with GPS’, Radio Sci., 2000, 36, pp. 459472 (doi: 10.1029/2000RS002353).
        . Radio Sci. , 459 - 472
    5. 5)
      • H. Järvinen , R. Eresmaa , H. Vedel .
        5. Järvinen, H., Eresmaa, R., Vedel, H., et al: ‘A variational data assimilation system for ground-based GPS slant delays’, Q. J. R. Meteorol. Soc., 2007, 133, pp. 969980 (doi: 10.1002/qj.79).
        . Q. J. R. Meteorol. Soc. , 969 - 980
    6. 6)
      • L.K. Lin , Z.W. Zhao , Y.R. Zhang .
        6. Lin, L.K., Zhao, Z.W., Zhang, Y.R., et al: ‘Tropospheric refractivity profiling based on refractivity profile model using single ground-based global positioning system’, IET Radar Sonar Navig., 2011, 5, (1), pp. 711 (doi: 10.1049/iet-rsn.2009.0167).
        . IET Radar Sonar Navig , 1 , 7 - 11
    7. 7)
      • R. Eresmaa , H. Järvinen , S. Niemelä .
        7. Eresmaa, R., Järvinen, H., Niemelä, S., et al: ‘Asymmetricity of ground-based GPS slant delay data’, Atmos. Chem. Phys., 2007, 7, pp. 31433151 (doi: 10.5194/acp-7-3143-2007).
        . Atmos. Chem. Phys. , 3143 - 3151
    8. 8)
      • S.V. Sokolovskiy , C. Rocken , A.R. Lowry .
        8. Sokolovskiy, S.V., Rocken, C., Lowry, A.R.: ‘The use of GPS for estimation of bending angles of radio waves at low elevations’, Radio Sci., 2001, 36, pp. 473482 (doi: 10.1029/2000RS002541).
        . Radio Sci. , 473 - 482
    9. 9)
      • T. Pany .
        9. Pany, T.: ‘Tropospheric GPS slant delays at very low elevations’. Proc. Int., Workshop on GPS Meteorology, Tsukuba, Japan, 2003.
        . Proc. Int., Workshop on GPS Meteorology
    10. 10)
      • L.K. Lin , Z.W. Zhao , Q.L. Zhu .
        10. Lin, L.K., Zhao, Z.W., Zhu, Q.L., et al: ‘Profiling tropospheric refractivity in real time, based on a relevance vector machine and single ground-based GPS receiver’, Int. J. Remote Sens., 2012, 33, (13), pp. 40444058 (doi: 10.1080/01431161.2011.639403).
        . Int. J. Remote Sens. , 13 , 4044 - 4058
    11. 11)
      • M. Born , E. Wolf . (1964)
        11. Born, M., Wolf, E.: ‘Principles of optics: Electromagnetic theory of propagation interference and diffraction of light’, (New York, Pergamon Press, 1964).
        .
    12. 12)
      • J. Saastamoinen .
        12. Saastamoinen, J.: ‘Contributions to the theory of atmospheric refraction’, In three parts, Bull. Géod., 1973, 105, pp. 279298, 106, 383–397, 107, pp.13–34 (doi: 10.1007/BF02521844).
        . In three parts, Bull. Géod. , 279 - 298
    13. 13)
      • H.D. Black , A. Eisner .
        13. Black, H.D., Eisner, A.: ‘Correcting satellite Doppler data for tropospheric effects’, Geophys. Res. Lett., 1984, 89, pp. 26162626 (doi: 10.1029/JD089iD02p02616).
        . Geophys. Res. Lett. , 2616 - 2626
    14. 14)
      • A.E. Niell .
        14. Niell, A.E.: ‘Global mapping functions for the atmospheric delay at radio wavelengths’, J. Geophys. Res., 1996, 101, pp. 32273246 (doi: 10.1029/95JB03048).
        . J. Geophys. Res. , 3227 - 3246
    15. 15)
      • J.F. Zumberge , M.B. Heflin , D.C. Jefferson .
        15. Zumberge, J.F., Heflin, M.B., Jefferson, D.C., et al: ‘Precise point positioning for the efficient and robust analysis of GPS data from large networks’, J. Geophys. Res., 1997, 102, pp. 50055017 (doi: 10.1029/96JB03860).
        . J. Geophys. Res. , 5005 - 5017
    16. 16)
      • J. Kouba , P. Heroux .
        16. Kouba, J., Heroux, P.: ‘Precise point positioning using IGS orbit and clock products’, GPS Solut., 2001, 5, (2), pp. 1228 (doi: 10.1007/PL00012883).
        . GPS Solut. , 2 , 12 - 28
    17. 17)
      • J.M. Wahr .
        17. Wahr, J.M.: ‘The forced nutation of an elliptical, rotating, elastic, and ocean less Earth’, Geophys. J. R. Astron. Soc., 1981, 64, pp. 705727 (doi: 10.1111/j.1365-246X.1981.tb02691.x).
        . Geophys. J. R. Astron. Soc. , 705 - 727
    18. 18)
      • 18. IERS, IERS Standards, 1989 IERS Technical Note 3 (ed. D.D. McCarthy, 1989).
        .
    19. 19)
      • 19. IERS, IERS Conventions, 1996 IERS Technical Note 21 (ed. D.D. McCarthy, 1996).
        .
    20. 20)
      • F. Takac , J. Walford .
        20. Takac, F., Walford, J.: ‘Leica system 1200-high performance GNSS technology for RTK applications’, Proc. 19th Int. Technical Meeting of the Satellite Division of the Institute of Navigation, Fort Worth, Texas, September 2006, pp. 217225.
        . Proc. 19th Int. Technical Meeting of the Satellite Division of the Institute of Navigation, Fort Worth, Texas , 217 - 225
    21. 21)
      • Q.L. Zhu , Z.S. Wu , Z.W. Zhao .
        21. Zhu, Q.L., Wu, Z.S., Zhao, Z.W.: ‘Precision improvement of tropospheric zenith path delay estimation by precise point positioning’, Geo. Inf. Sci. Wuhan University, 2009, 34, pp. 10981101.
        . Geo. Inf. Sci. Wuhan University , 1098 - 1101
    22. 22)
      • P. Misra , P. Enge . (2001)
        22. Misra, P., Enge, P.: ‘Global positioning system: signals, measurements and performance’, (Ganga-Jamuna Press, 2001).
        .
    23. 23)
      • P. Misra , P. Enge . (2006)
        23. Misra, P., Enge, P.: ‘Global positioning system: signals, measurements, and performance’ (Ganga-Jamuna Press, 2006, 2nd Edn.).
        .
    24. 24)
      • J.K. Ray , M.E. Cannon , P. Fenton .
        24. Ray, J.K., Cannon, M.E., Fenton, P.: ‘Code and carrier multipath mitigation using a multi-antenna system’, IEEE Trans. Aerosp. Electron. Syst., 2001, 37, (1), pp. 183195 (doi: 10.1109/7.913677).
        . IEEE Trans. Aerosp. Electron. Syst. , 1 , 183 - 195
    25. 25)
      • J.K. Ray , M.E. Cannon , P. Fenton .
        25. Ray, J.K., Cannon, M.E., Fenton, P.: ‘Mitigation of carrier phase multipath effects using multiple closely-spaced antennas’, Navigation, 2001, 46, pp. 193201.
        . Navigation , 193 - 201
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2012.0235
Loading

Related content

content/journals/10.1049/iet-rsn.2012.0235
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address