http://iet.metastore.ingenta.com
1887

New analytical approach to detection threshold of a dynamic programming track-before-detect algorithm

New analytical approach to detection threshold of a dynamic programming track-before-detect algorithm

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Maintaining the constant false alarm rate (CFAR) is an important issue for the dynamic programming-based track-before-detect (DP-TBD) in low signal-to-noise ratio environment. However, the existing method for analysing the false alarm probability, based on extreme value theory (EVT), leads to the inaccuracy of the obtained detection threshold. In this study, a new analytical approach to compute the false alarm probability of DP-TBD is presented. In the proposed method, the generalised Pareto distribution is utilised to approximate the false alarm probability based on the peaks over threshold model, which can maintain CFAR for DP-TBD method in the low signal-to-noise environment effectively. Simulation results show that this approach provides a more accurate false alarm probability estimation than previous EVT methods.

References

    1. 1)
      • X. Deng , Y. Pi , M. Morelande , B. Moran .
        1. Deng, X., Pi, Y., Morelande, M., Moran, B.: ‘Track-before-detect procedures for low pulse repetition frequency surveillance radars’, IET Radar Sonar Navig., 2011, 5, (1), pp. 6573 (doi: 10.1049/iet-rsn.2009.0245).
        . IET Radar Sonar Navig. , 1 , 65 - 73
    2. 2)
      • D. Orlando , L. Venturino , M. Lops , G. Ricci .
        2. Orlando, D., Venturino, L., Lops, M., Ricci, G.: ‘Track-before-detect strategies for stap radars’, IEEE Trans. Signal Process., 2010, 58, (2), pp. 933938, (doi: 10.1109/TSP.2009.2032991).
        . IEEE Trans. Signal Process. , 2 , 933 - 938
    3. 3)
      • S. Davey , M. Rutten , B. Cheung .
        3. Davey, S., Rutten, M., Cheung, B.: ‘Using phase to improve track-before-detect’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (1), pp. 832849 (doi: 10.1109/TAES.2012.6129673).
        . IEEE Trans. Aerosp. Electron. Syst. , 1 , 832 - 849
    4. 4)
      • N. Mohanty .
        4. Mohanty, N.: ‘Computer tracking of moving point targets in space’, IEEE Trans. Pattern Anal. Mach. Intell., 1981, Pami-3, (5), pp. 606611 (doi: 10.1109/TPAMI.1981.4767153).
        . IEEE Trans. Pattern Anal. Mach. Intell. , 5 , 606 - 611
    5. 5)
      • I. Reed , R. Gagliardi , L. Stotts .
        5. Reed, I., Gagliardi, R., Stotts, L.: ‘Optical moving target detection with 3-d matched filtering’, IEEE Trans. Aerosp. Electron. Syst., 1988, 24, (4), pp. 327336 (doi: 10.1109/7.7174).
        . IEEE Trans. Aerosp. Electron. Syst. , 4 , 327 - 336
    6. 6)
      • S. Buzzi , M. Lops , L. Venturino , M. Ferri .
        6. Buzzi, S., Lops, M., Venturino, L., Ferri, M.: ‘Detection of an unknown number of targets via track-before-detect procedures’. IEEE 2007 IEEE Radar Conf., 2007, pp. 180185.
        . IEEE 2007 IEEE Radar Conf. , 180 - 185
    7. 7)
      • S. Buzzi , M. Lops , L. Venturino , M. Ferri .
        7. Buzzi, S., Lops, M., Venturino, L., Ferri, M.: ‘Track-before-detect procedures in a multi-target environment’, IEEE Trans. Aerosp. Electron. Syst., 2008, 44, (3), pp. 11351150 (doi: 10.1109/TAES.2008.4655369).
        . IEEE Trans. Aerosp. Electron. Syst. , 3 , 1135 - 1150
    8. 8)
      • Y. Barniv .
        8. Barniv, Y.: ‘Dynamic programming solution for detecting dim moving targets’, IEEE Trans. Aerosp. Electron. Syst., 1985, AES-21, (1), pp. 144156 (doi: 10.1109/TAES.1985.310548).
        . IEEE Trans. Aerosp. Electron. Syst. , 1 , 144 - 156
    9. 9)
      • Y. Barniv , O. Kella .
        9. Barniv, Y., Kella, O.: ‘Dynamic programming solution for detecting dim moving targets – part ii: analysis’, IEEE Trans. Aerosp. Electron. Syst., 1987, AES-23, (6), pp. 776788 (doi: 10.1109/TAES.1987.310914).
        . IEEE Trans. Aerosp. Electron. Syst. , 6 , 776 - 788
    10. 10)
      • S. Tonissen , R. Evans .
        10. Tonissen, S., Evans, R.: ‘Peformance of dynamic programming techniques for track-before-detect’, IEEE Trans. Aerosp. Electron. Syst., 1996, 32, (4), pp. 14401451 (doi: 10.1109/7.543865).
        . IEEE Trans. Aerosp. Electron. Syst. , 4 , 1440 - 1451
    11. 11)
      • L. Johnston , V. Krishnamurthy .
        11. Johnston, L., Krishnamurthy, V.: ‘Performance analysis of a dynamic programming track before detect algorithm’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (1), pp. 228242 (doi: 10.1109/7.993242).
        . IEEE Trans. Aerosp. Electron. Syst. , 1 , 228 - 242
    12. 12)
      • S. Coles , E. Powell .
        12. Coles, S., Powell, E.: ‘Bayesian methods in extreme value modelling: a review and new developments’, Int. Stat. Rev./Rev. Int. Stat., 1996, 64, (1), pp. 119136 (doi: 10.2307/1403426).
        . Int. Stat. Rev./Rev. Int. Stat. , 1 , 119 - 136
    13. 13)
      • R. Reiss , M. Thomas . (2007)
        13. Reiss, R., Thomas, M.: ‘Statistical analysis of extreme values: with applications to insurance, finance, hydrology and other fields’ (Birkhauser, 2007).
        .
    14. 14)
      • M. Baveja , H. Yuan , L. Wein .
        14. Baveja, M., Yuan, H., Wein, L.: ‘Asymptotic biometric analysis for large gallery sizes’, IEEE Trans. Inf. Forensics Sec., 2010, 5, (4), pp. 955964 (doi: 10.1109/TIFS.2010.2058105).
        . IEEE Trans. Inf. Forensics Sec. , 4 , 955 - 964
    15. 15)
      • S. Data .
        15. Data, S.: ‘Meta-recognition: the theory and practice of recognition score analysis’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (8), pp. 1 (doi: 10.1109/TPAMI.2011.125).
        . IEEE Trans. Pattern Anal. Mach. Intell. , 8 , 1
    16. 16)
      • J. Pickands III .
        16. Pickands III, J.: ‘Statistical inference using extreme order statistics’, Ann. Stat., 1975, 3, (1), pp. 119131 (doi: 10.1214/aos/1176343003).
        . Ann. Stat. , 1 , 119 - 131
    17. 17)
      • N. Zhang , S. Hao , Y. Li .
        17. Zhang, N., Hao, S., Li, Y.: ‘An improved fast viterbi algorithm for track-before-detect’. Proc. 2010 Third Int. Congress on Image and Signal Processing (CISP), 2010, vol. 7, pp. 31253128.
        . Proc. 2010 Third Int. Congress on Image and Signal Processing (CISP) , 3125 - 3128
    18. 18)
      • D. Manolakis , D. Zhang , M. Rossacci , R. Lockwood , T. Cooley , J. Jacobson .
        18. Manolakis, D., Zhang, D., Rossacci, M., Lockwood, R., Cooley, T., Jacobson, J.: ‘Maintaining cfar operation in hyperspectral target detection using extreme value distributions’. Proc. SPIE, 2007, vol. 6565, pp. 65651W.
        . Proc. SPIE , 65651W
    19. 19)
      • M. Piotrkowski .
        19. Piotrkowski, M.: ‘Some preliminary experiments with distribution-independent evt-cfar based on recorded radar data’. IEEE Radar Conf. 2008 (RADAR'08), 2008, pp. 16.
        . IEEE Radar Conf. 2008 (RADAR'08) , 1 - 6
    20. 20)
      • J. Broadwater , R. Chellappa .
        20. Broadwater, J., Chellappa, R.: ‘Adaptive threshold estimation via extreme value theory’, IEEE Trans. Signal Process., 2010, 58, (2), pp. 490500 (doi: 10.1109/TSP.2009.2031285).
        . IEEE Trans. Signal Process. , 2 , 490 - 500
    21. 21)
      • J. Gelb , R. Heath , G. Tipple .
        21. Gelb, J., Heath, R., Tipple, G.: ‘Statistics of distinct clutter classes in midfrequency active sonar’, IEEE J. Ocean. Eng., 2010, 35, (2), pp. 220229 (doi: 10.1109/JOE.2009.2031547).
        . IEEE J. Ocean. Eng. , 2 , 220 - 229
    22. 22)
      • T. Nguyen , G. Samorodnitsky .
        22. Nguyen, T., Samorodnitsky, G.: ‘Tail inference: where does the tail begin?’, Extremes, 2011, 0, pp. 125.
        . Extremes , 1 - 25
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2012.0172
Loading

Related content

content/journals/10.1049/iet-rsn.2012.0172
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address