Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Advanced range migration algorithm for ultra-high resolution spaceborne synthetic aperture radar

To achieve ultra-high resolution images, processing algorithm of spaceborne synthetic aperture radar (SAR) faces significant challenges such as the curved orbit, the unneglectable propagation time and the space-variant effective velocity. In the light of imaging requirements of the ultra-high resolution spaceborne SAR, an advanced range migration algorithm (ARMA) is presented in this study. Firstly, a new slant range model is developed by incorporating straight orbit approximation with additional linear, cubic and quartic term. Subsequently, a two-dimensional spectrum is derived by making use of Fourier transform pairs and the approximate azimuth stationary point based on the new range model. Finally, a novel RMA is derived. In this algorithm, the accurate range cell migration correction (RCMC) is done through two steps: the effective velocity dependence RCMC and the bulk RCMC, and the range-variant azimuth filtering is accomplished. Simulations are carried out to verify our proposed algorithm, which indicate that ARMA can keep precise even the resolution is up to decimeter level.

References

    1. 1)
      • 23. Moreira, A., Mittermayer, J., Scheiber, R.: ‘Extended chirp scaling algorithm for air and spaceborne SAR data processing in stripmap and ScanSAR imaging modes’, IEEE Trans. Geosci. Remote Sens., 1996, 34, (5), pp. 11231136 (doi: 10.1109/36.536528).
    2. 2)
      • 6. Stangl, M., Werninghaus, R., Schweizer, B., et al: ‘TerraSAR-X technologies and first results’, IEE Proc. Radar Sonar Navig., 2006, 153, (2), pp. 8695 (doi: 10.1049/ip-rsn:20045119).
    3. 3)
      • 25. Eldhuset, K.: ‘A new fourth-order processing algorithm for spaceborne SAR’, IEEE Trans. Aerosp. Electron. Syst., 1998, 34, (3), pp. 824835 (doi: 10.1109/7.705890).
    4. 4)
      • 17. Lijia, H., Xiaolan, Q., Donghui, H., Chibiao, D.: ‘Focusing of medium-earth-orbit SAR with advanced nonlinear chirp scaling algorithm’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (1), pp. 500508 (doi: 10.1109/TGRS.2010.2053211).
    5. 5)
      • 12. Chini, M., Pulvirenti, L., Pierdicca, N.: ‘Analysis and interpretation of the COSMO-SkyMed observations of the 2011 Japan Tsunami’, IEEE Geosci. Remote Sens. Lett., 2012, 9, (3), pp. 467471 (doi: 10.1109/LGRS.2011.2182495).
    6. 6)
      • 2. Jin-Woo, K., Duk-jin, K., Byong, J.H.: ‘Characterization of Arctic Sea ice thickness using high-resolution spaceborne polarimetric SAR data’, IEEE Trans. Geosci. Remote Sens., 2012, 50, (1), pp. 1322 (doi: 10.1109/TGRS.2011.2160070).
    7. 7)
      • 24. Wong, F.H., Cumming, I.G., Raney, R.K.: ‘Processing of simulated RADARSAT SAR data with squint by a high precision algorithm’. IGARSS'93 Proc., Tokyo, Japan, 1993, pp. 11761178.
    8. 8)
      • 3. Fallourd, R., Harant, O., Trouve, E., et al: ‘Monitoring temperate glacier displacement by multi-temporal TerraSAR-X images and continuous GPS measurements’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2011, 4, (2), pp. 372386 (doi: 10.1109/JSTARS.2010.2096200).
    9. 9)
      • 13. Covello, F., Battazza, F., Coletta, A., Manoni, G., Valentini, G.: ‘COSMO-SkyMed mission status: three out of four satellites in orbit’. IEEE Int. Geoscience and Remote Sensing Symp., 2009 IGARSS 2009, Cape Town, South Africa, 2009, vol. 2, pp. II-773II-776.
    10. 10)
      • 22. Davidson, G.W., Cumming, I.G., Ito, M.R.: ‘A chirp scaling approach for processing squint mode SAR data’, IEEE Trans. Aerosp. Electron. Syst., 1996, 32, (1), pp. 121133 (doi: 10.1109/7.481254).
    11. 11)
      • 5. Teng, L., Luosi, L., Zegang, D.: ‘Strategy of Doppler centroid estimation in synthetic aperture radar’, IET Radar, Sonar Navig., 2011, 5, (3), pp. 279287 (doi: 10.1049/iet-rsn.2010.0134).
    12. 12)
      • 4. Lardeux, C., Frison, P.L., Tison, C., et al: ‘Classification of tropical vegetation using multifrequency partial SAR polarimetry’, IEEE Geosci. Remote Sens. Lett., 2011, 8, (1), pp. 133137 (doi: 10.1109/LGRS.2010.2053836).
    13. 13)
      • 19. Baochang, L., Tong, W., Zheng, B.: ‘Bistatic SAR data focusing using an omega-k algorithm based on method of series reversion’, IEEE Trans. Geosci. Remote Sens., 2009, 47, (8), pp. 28992912 (doi: 10.1109/TGRS.2009.2017522).
    14. 14)
      • 20. Baochang, L., Tong, W., Zheng, B.: ‘An analytical method of updating the range derivatives and a simple image registration method for the MSR-based range Doppler algorithm’, IEEE Geosci. Remote Sens. Lett., 2010, 7, (4), pp. 831835 (doi: 10.1109/LGRS.2010.2048888).
    15. 15)
      • 16. Zegang, D., Teng, L., Tao, Z., Yu, Z.: ‘Deramp range migration processing for spaceborne spotlight synthetic aperture radar’, Adv. Space Res., 2008, 41, pp. 18221826 (doi: 10.1016/j.asr.2008.01.009).
    16. 16)
      • 18. Hu, C., Liu, Z., Long, T.: ‘An improved CS algorithm based on the curved trajectory in geosynchronous SAR’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2012, 5, (1), pp. 114 (doi: 10.1109/JSTARS.2012.2188749).
    17. 17)
      • 15. Neo, Y.L., Wong, F.H., Cumming, I.G.: ‘A two-dimensional spectrum for bistatic SAR processing using series reversion’, IEEE Geosci. Remote Sens. Lett., 2007, 4, (1), pp. 9396 (doi: 10.1109/LGRS.2006.885862).
    18. 18)
      • 21. Carrara, W.G., Goodman, R.S., Majewski, R.M.: ‘Spotlight synthetic aperture radar: signal processing algorithms’ (Artech House, Boston, 1995).
    19. 19)
      • 9. Buckreuss, S., Werninghaus, R., Pitz, W.: ‘The German satellite mission TerraSAR-X’, IEEE Aerosp. Electron. Syst. Mag., 2009, 24, (11), pp. 49 (doi: 10.1109/MAES.2009.5344175).
    20. 20)
      • 10. Lombardo, P., Colone, F., Pastina, D.: ‘Monitoring and surveillance potentialities obtained by splitting the antenna of the COSMO-SkyMed SAR into multiple sub-apertures’, IEE Proc. Radar Sonar Navig., 2006, 153, (2), pp. 104116 (doi: 10.1049/ip-rsn:20045122).
    21. 21)
      • 8. Yoon, Y.T., Eineder, M., Yague-Martinez, N., Montenbruck, O.: ‘TerraSAR-X precise trajectory estimation and quality assessment’, IEEE Trans. Geosci. Remote Sens., 2009, 47, (6), pp. 18591868 (doi: 10.1109/TGRS.2008.2006983).
    22. 22)
      • 7. Eineder, M., Adam, N., Bamler, R., Yague-Martinez, N., Breit, H.: ‘Spaceborne spotlight SAR interferometry with TerraSAR-X’, IEEE Trans. Geosci. Remote Sens., 2009, 47, (5), pp. 15241535 (doi: 10.1109/TGRS.2008.2004714).
    23. 23)
      • 1. Cumming, I.G., Wong, F.H.: ‘Digital processing of synthetic aperture radar data: algorithms and implementation’ (Artech House, Norwood, MA, 2005).
    24. 24)
      • 14. Gillen, C.M.: ‘Alternatives for military space radar’. Congressional Budget Office, January2007, http://www.fas.org/irp/program/collect/cbo-radar.pdf.
    25. 25)
      • 11. Capaldo, P., Crespi, M., Fratarcangeli, F., Nascetti, A., Pieralice, F.: ‘High-resolution SAR Radargrammetry: a first application with COSMO-SkyMed spotlight imagery’, IEEE Geosci. Remote Sens. Lett., 2011, 8, (6), pp. 11001104 (doi: 10.1109/LGRS.2011.2157803).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2012.0124
Loading

Related content

content/journals/10.1049/iet-rsn.2012.0124
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address