http://iet.metastore.ingenta.com
1887

Advanced range migration algorithm for ultra-high resolution spaceborne synthetic aperture radar

Advanced range migration algorithm for ultra-high resolution spaceborne synthetic aperture radar

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

To achieve ultra-high resolution images, processing algorithm of spaceborne synthetic aperture radar (SAR) faces significant challenges such as the curved orbit, the unneglectable propagation time and the space-variant effective velocity. In the light of imaging requirements of the ultra-high resolution spaceborne SAR, an advanced range migration algorithm (ARMA) is presented in this study. Firstly, a new slant range model is developed by incorporating straight orbit approximation with additional linear, cubic and quartic term. Subsequently, a two-dimensional spectrum is derived by making use of Fourier transform pairs and the approximate azimuth stationary point based on the new range model. Finally, a novel RMA is derived. In this algorithm, the accurate range cell migration correction (RCMC) is done through two steps: the effective velocity dependence RCMC and the bulk RCMC, and the range-variant azimuth filtering is accomplished. Simulations are carried out to verify our proposed algorithm, which indicate that ARMA can keep precise even the resolution is up to decimeter level.

References

    1. 1)
      • I.G. Cumming , F.H. Wong . (2005)
        1. Cumming, I.G., Wong, F.H.: ‘Digital processing of synthetic aperture radar data: algorithms and implementation’ (Artech House, Norwood, MA, 2005).
        .
    2. 2)
      • K. Jin-Woo , K. Duk-jin , J.H. Byong .
        2. Jin-Woo, K., Duk-jin, K., Byong, J.H.: ‘Characterization of Arctic Sea ice thickness using high-resolution spaceborne polarimetric SAR data’, IEEE Trans. Geosci. Remote Sens., 2012, 50, (1), pp. 1322 (doi: 10.1109/TGRS.2011.2160070).
        . IEEE Trans. Geosci. Remote Sens. , 1 , 13 - 22
    3. 3)
      • R. Fallourd , O. Harant , E. Trouve .
        3. Fallourd, R., Harant, O., Trouve, E., et al: ‘Monitoring temperate glacier displacement by multi-temporal TerraSAR-X images and continuous GPS measurements’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2011, 4, (2), pp. 372386 (doi: 10.1109/JSTARS.2010.2096200).
        . IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , 2 , 372 - 386
    4. 4)
      • C. Lardeux , P.L. Frison , C. Tison .
        4. Lardeux, C., Frison, P.L., Tison, C., et al: ‘Classification of tropical vegetation using multifrequency partial SAR polarimetry’, IEEE Geosci. Remote Sens. Lett., 2011, 8, (1), pp. 133137 (doi: 10.1109/LGRS.2010.2053836).
        . IEEE Geosci. Remote Sens. Lett. , 1 , 133 - 137
    5. 5)
      • L. Teng , L. Luosi , D. Zegang .
        5. Teng, L., Luosi, L., Zegang, D.: ‘Strategy of Doppler centroid estimation in synthetic aperture radar’, IET Radar, Sonar Navig., 2011, 5, (3), pp. 279287 (doi: 10.1049/iet-rsn.2010.0134).
        . IET Radar, Sonar Navig. , 3 , 279 - 287
    6. 6)
      • M. Stangl , R. Werninghaus , B. Schweizer .
        6. Stangl, M., Werninghaus, R., Schweizer, B., et al: ‘TerraSAR-X technologies and first results’, IEE Proc. Radar Sonar Navig., 2006, 153, (2), pp. 8695 (doi: 10.1049/ip-rsn:20045119).
        . IEE Proc. Radar Sonar Navig. , 2 , 86 - 95
    7. 7)
      • M. Eineder , N. Adam , R. Bamler , N. Yague-Martinez , H. Breit .
        7. Eineder, M., Adam, N., Bamler, R., Yague-Martinez, N., Breit, H.: ‘Spaceborne spotlight SAR interferometry with TerraSAR-X’, IEEE Trans. Geosci. Remote Sens., 2009, 47, (5), pp. 15241535 (doi: 10.1109/TGRS.2008.2004714).
        . IEEE Trans. Geosci. Remote Sens. , 5 , 1524 - 1535
    8. 8)
      • Y.T. Yoon , M. Eineder , N. Yague-Martinez , O. Montenbruck .
        8. Yoon, Y.T., Eineder, M., Yague-Martinez, N., Montenbruck, O.: ‘TerraSAR-X precise trajectory estimation and quality assessment’, IEEE Trans. Geosci. Remote Sens., 2009, 47, (6), pp. 18591868 (doi: 10.1109/TGRS.2008.2006983).
        . IEEE Trans. Geosci. Remote Sens. , 6 , 1859 - 1868
    9. 9)
      • S. Buckreuss , R. Werninghaus , W. Pitz .
        9. Buckreuss, S., Werninghaus, R., Pitz, W.: ‘The German satellite mission TerraSAR-X’, IEEE Aerosp. Electron. Syst. Mag., 2009, 24, (11), pp. 49 (doi: 10.1109/MAES.2009.5344175).
        . IEEE Aerosp. Electron. Syst. Mag. , 11 , 4 - 9
    10. 10)
      • P. Lombardo , F. Colone , D. Pastina .
        10. Lombardo, P., Colone, F., Pastina, D.: ‘Monitoring and surveillance potentialities obtained by splitting the antenna of the COSMO-SkyMed SAR into multiple sub-apertures’, IEE Proc. Radar Sonar Navig., 2006, 153, (2), pp. 104116 (doi: 10.1049/ip-rsn:20045122).
        . IEE Proc. Radar Sonar Navig. , 2 , 104 - 116
    11. 11)
      • P. Capaldo , M. Crespi , F. Fratarcangeli , A. Nascetti , F. Pieralice .
        11. Capaldo, P., Crespi, M., Fratarcangeli, F., Nascetti, A., Pieralice, F.: ‘High-resolution SAR Radargrammetry: a first application with COSMO-SkyMed spotlight imagery’, IEEE Geosci. Remote Sens. Lett., 2011, 8, (6), pp. 11001104 (doi: 10.1109/LGRS.2011.2157803).
        . IEEE Geosci. Remote Sens. Lett. , 6 , 1100 - 1104
    12. 12)
      • M. Chini , L. Pulvirenti , N. Pierdicca .
        12. Chini, M., Pulvirenti, L., Pierdicca, N.: ‘Analysis and interpretation of the COSMO-SkyMed observations of the 2011 Japan Tsunami’, IEEE Geosci. Remote Sens. Lett., 2012, 9, (3), pp. 467471 (doi: 10.1109/LGRS.2011.2182495).
        . IEEE Geosci. Remote Sens. Lett. , 3 , 467 - 471
    13. 13)
      • F. Covello , F. Battazza , A. Coletta , G. Manoni , G. Valentini .
        13. Covello, F., Battazza, F., Coletta, A., Manoni, G., Valentini, G.: ‘COSMO-SkyMed mission status: three out of four satellites in orbit’. IEEE Int. Geoscience and Remote Sensing Symp., 2009 IGARSS 2009, Cape Town, South Africa, 2009, vol. 2, pp. II-773II-776.
        . IEEE Int. Geoscience and Remote Sensing Symp., 2009 IGARSS 2009 , II - 773
    14. 14)
      • C.M. Gillen . (2007)
        14. Gillen, C.M.: ‘Alternatives for military space radar’. Congressional Budget Office, January2007, http://www.fas.org/irp/program/collect/cbo-radar.pdf.
        .
    15. 15)
      • Y.L. Neo , F.H. Wong , I.G. Cumming .
        15. Neo, Y.L., Wong, F.H., Cumming, I.G.: ‘A two-dimensional spectrum for bistatic SAR processing using series reversion’, IEEE Geosci. Remote Sens. Lett., 2007, 4, (1), pp. 9396 (doi: 10.1109/LGRS.2006.885862).
        . IEEE Geosci. Remote Sens. Lett. , 1 , 93 - 96
    16. 16)
      • D. Zegang , L. Teng , Z. Tao , Z. Yu .
        16. Zegang, D., Teng, L., Tao, Z., Yu, Z.: ‘Deramp range migration processing for spaceborne spotlight synthetic aperture radar’, Adv. Space Res., 2008, 41, pp. 18221826 (doi: 10.1016/j.asr.2008.01.009).
        . Adv. Space Res. , 1822 - 1826
    17. 17)
      • H. Lijia , Q. Xiaolan , H. Donghui , D. Chibiao .
        17. Lijia, H., Xiaolan, Q., Donghui, H., Chibiao, D.: ‘Focusing of medium-earth-orbit SAR with advanced nonlinear chirp scaling algorithm’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (1), pp. 500508 (doi: 10.1109/TGRS.2010.2053211).
        . IEEE Trans. Geosci. Remote Sens. , 1 , 500 - 508
    18. 18)
      • C. Hu , Z. Liu , T. Long .
        18. Hu, C., Liu, Z., Long, T.: ‘An improved CS algorithm based on the curved trajectory in geosynchronous SAR’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2012, 5, (1), pp. 114 (doi: 10.1109/JSTARS.2012.2188749).
        . IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , 1 , 1 - 14
    19. 19)
      • L. Baochang , W. Tong , B. Zheng .
        19. Baochang, L., Tong, W., Zheng, B.: ‘Bistatic SAR data focusing using an omega-k algorithm based on method of series reversion’, IEEE Trans. Geosci. Remote Sens., 2009, 47, (8), pp. 28992912 (doi: 10.1109/TGRS.2009.2017522).
        . IEEE Trans. Geosci. Remote Sens. , 8 , 2899 - 2912
    20. 20)
      • L. Baochang , W. Tong , B. Zheng .
        20. Baochang, L., Tong, W., Zheng, B.: ‘An analytical method of updating the range derivatives and a simple image registration method for the MSR-based range Doppler algorithm’, IEEE Geosci. Remote Sens. Lett., 2010, 7, (4), pp. 831835 (doi: 10.1109/LGRS.2010.2048888).
        . IEEE Geosci. Remote Sens. Lett. , 4 , 831 - 835
    21. 21)
      • W.G. Carrara , R.S. Goodman , R.M. Majewski . (1995)
        21. Carrara, W.G., Goodman, R.S., Majewski, R.M.: ‘Spotlight synthetic aperture radar: signal processing algorithms’ (Artech House, Boston, 1995).
        .
    22. 22)
      • G.W. Davidson , I.G. Cumming , M.R. Ito .
        22. Davidson, G.W., Cumming, I.G., Ito, M.R.: ‘A chirp scaling approach for processing squint mode SAR data’, IEEE Trans. Aerosp. Electron. Syst., 1996, 32, (1), pp. 121133 (doi: 10.1109/7.481254).
        . IEEE Trans. Aerosp. Electron. Syst. , 1 , 121 - 133
    23. 23)
      • A. Moreira , J. Mittermayer , R. Scheiber .
        23. Moreira, A., Mittermayer, J., Scheiber, R.: ‘Extended chirp scaling algorithm for air and spaceborne SAR data processing in stripmap and ScanSAR imaging modes’, IEEE Trans. Geosci. Remote Sens., 1996, 34, (5), pp. 11231136 (doi: 10.1109/36.536528).
        . IEEE Trans. Geosci. Remote Sens. , 5 , 1123 - 1136
    24. 24)
      • F.H. Wong , I.G. Cumming , R.K. Raney .
        24. Wong, F.H., Cumming, I.G., Raney, R.K.: ‘Processing of simulated RADARSAT SAR data with squint by a high precision algorithm’. IGARSS'93 Proc., Tokyo, Japan, 1993, pp. 11761178.
        . IGARSS'93 Proc. , 1176 - 1178
    25. 25)
      • K. Eldhuset .
        25. Eldhuset, K.: ‘A new fourth-order processing algorithm for spaceborne SAR’, IEEE Trans. Aerosp. Electron. Syst., 1998, 34, (3), pp. 824835 (doi: 10.1109/7.705890).
        . IEEE Trans. Aerosp. Electron. Syst. , 3 , 824 - 835
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2012.0124
Loading

Related content

content/journals/10.1049/iet-rsn.2012.0124
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address