http://iet.metastore.ingenta.com
1887

Passive acoustic localisation using blind Gauss–Markov estimate with spectral estimation at each sensor

Passive acoustic localisation using blind Gauss–Markov estimate with spectral estimation at each sensor

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Time-delay estimation has essential applications in the field of radar, sonar and robotics. For a very distant source, time-delay vector estimation across an M-sensor array is realised using the generalised cross-correlation (GCC) function and the estimates combined with their covariance matrix, expressed in terms of a priori known signal and noise spectra, to yield a linear minimum variance unbiased estimator, known as the Gauss–Markov Estimate. In the absence of a priori information, spectral estimation has to be done at one of the sensors. For close range sources, the use of amplitude attenuation information across the array will improve this estimate further. This study presents a new amplitude information related Gauss–Markov estimate, which calculates the power spectral density (PSD) at all the sensors of the array and gives more accurate time delay estimates in terms of the mean-square error when compared to the earlier constant amplitude-based technique using the PSD at the closest sensor. The performance has been evaluated against signal-to-noise ratio for varying distance of a source from the receiving array. The results have been verified by simulations and experiments for a two-dimensional source localisation problem.

References

    1. 1)
      • M.T. Silvia . (1987)
        1. Silvia, M.T.: ‘Time delay estimation’, in Elliot, D.F. (Ed.): ‘Handbook of digital signal processing’ (Academic Press, 1987), pp. 789855.
        .
    2. 2)
      • K.C. Ho , M. Sun .
        2. Ho, K.C., Sun, M.: ‘An accurate algebraic closed-form solution for energy-based source localization’, IEEE Trans. Audio, Speech Lang. Process., 2007, 15, (8), pp. 25422550 (doi: 10.1109/TASL.2007.903312).
        . IEEE Trans. Audio, Speech Lang. Process. , 8 , 2542 - 2550
    3. 3)
      • J.C. Chen , R.E. Hudson , K. Yao .
        3. Chen, J.C., Hudson, R.E., Yao, K.: ‘A maximum likelihood parametric approach to source localization’. Proc. Int. Conf. on Acoustic Speech and Signal Processing, Salt Lake City, UT, USA, May 2001, pp. 30133016.
        . Proc. Int. Conf. on Acoustic Speech and Signal Processing , 3013 - 3016
    4. 4)
      • W. Cui , Z. Cao , J. Wei .
        4. Cui, W., Cao, Z., Wei, J.: ‘Dual microphone source location method in 2 D space’. Proc. IEEE Int. Conf. on Acoustic, Speech, and Signal Processing, Toulouse, France, May 2006, pp. 845848.
        . Proc. IEEE Int. Conf. on Acoustic, Speech, and Signal Processing , 845 - 848
    5. 5)
      • K.C. Ho , M. Sun .
        5. Ho, K.C., Sun, M.: ‘Passive source localization using time differences of arrival and gain ratios of arrival’, IEEE Trans. Signal Process., 2008, 56, (2), pp. 464477 (doi: 10.1109/TSP.2007.906728).
        . IEEE Trans. Signal Process. , 2 , 464 - 477
    6. 6)
      • P.Y. Mignotte , E. Coiras , H. Rohou , Y. Petillot , J. Bell , K. Lebart .
        6. Mignotte, P.Y., Coiras, E., Rohou, H., Petillot, Y., Bell, J., Lebart, K.: ‘Adaptive fusion framework based on augmented reality training’, IET Radar Sonar Navig., 2008, 2, (2), pp. 146154 (doi: 10.1049/iet-rsn:20070136).
        . IET Radar Sonar Navig. , 2 , 146 - 154
    7. 7)
      • B.G. Ferguson .
        7. Ferguson, B.G.: ‘Variability in the passive ranging of acoustic sources in air using a wavefront curvature technique’, J. Acoust. Soc. Am., 2000, 108, pp. 15351544 (doi: 10.1121/1.1286813).
        . J. Acoust. Soc. Am. , 1535 - 1544
    8. 8)
      • P. Pertila , T. Korhonen , A. Visa .
        8. Pertila, P., Korhonen, T., Visa, A.: ‘Measurement combination for acoustic source localization in a room environment’, EURASIP J. Audio, Speech Music Process., 2008, 2008, pp. 114 (doi: 10.1155/2008/278185).
        . EURASIP J. Audio, Speech Music Process. , 1 - 14
    9. 9)
      • H.C. So .
        9. So, H.C.: ‘Time-delay estimation for sinusoidal signals’, IEE Proc. – Radar, Sonar Navig., 2001, 148, (6), pp. 318324 (doi: 10.1049/ip-rsn:20010589).
        . IEE Proc. – Radar, Sonar Navig. , 6 , 318 - 324
    10. 10)
      • W.J. Bangs , P.M. Schultheiss . (1973)
        10. Bangs, W.J., Schultheiss, P.M.: ‘Space-time processing for optimal parameter estimation’, in Griffiths, J.W.R., Stocklin, P.L. (Eds.): ‘Signal processing’ (Academic, New York, 1973).
        .
    11. 11)
      • G.C. Carter . (1993)
        11. Carter, G.C.: ‘Coherence and time delay estimation’ (IEEE Academic Press, 1993).
        .
    12. 12)
      • J.C. Hassab , R.E. Boucher .
        12. Hassab, J.C., Boucher, R.E.: ‘Optimum estimation of time delay by a generalized correlator’, IEEE Trans. Acoust., Speech Signal Process., 1979, 27, (4), pp. 373380 (doi: 10.1109/TASSP.1979.1163269).
        . IEEE Trans. Acoust., Speech Signal Process. , 4 , 373 - 380
    13. 13)
      • A.O. Hero , S.C. Schwartz .
        13. Hero, A.O., Schwartz, S.C.: ‘A new generalized cross-correlator’, IEEE Trans. Acoust., Speech Signal Process., 1985, 33, (1), pp. 3845 (doi: 10.1109/TASSP.1985.1164515).
        . IEEE Trans. Acoust., Speech Signal Process. , 1 , 38 - 45
    14. 14)
      • P.B. Muanke , C. Niezrecki .
        14. Muanke, P.B., Niezrecki, C.: ‘Manatee position estimation by passive acoustic localization’, J. Acoust. Soc. Am., 2007, 121, (4), pp. 20492059 (doi: 10.1121/1.2532210).
        . J. Acoust. Soc. Am. , 4 , 2049 - 2059
    15. 15)
      • W.R. Hahn .
        15. Hahn, W.R.: ‘Optimum signal processing for passive sonar range and bearing estimation’, J. Acoust. Soc. Am., 1975, 58, (1), pp. 201207 (doi: 10.1121/1.380646).
        . J. Acoust. Soc. Am. , 1 , 201 - 207
    16. 16)
      • H. Choudhary , R. Bahl , A. Kumar .
        16. Choudhary, H., Bahl, R., Kumar, A.: ‘Passive acoustic localization using blind Gauss–Markov estimate for the time delay vector’. Proc. Int. Symp. on Ocean Electronics, India, November 2011, pp. 5662.
        . Proc. Int. Symp. on Ocean Electronics , 56 - 62
    17. 17)
      • B.G. Ferguson , R.J. Wyber .
        17. Ferguson, B.G., Wyber, R.J.: ‘Wavefront curvature passive ranging in a temporally varying sound propagation medium’. MTS/IEEE Conf. and Exhib. OCEANS 2001, USA, November 2001, Vol. 4, pp. 23592365.
        . MTS/IEEE Conf. and Exhib. OCEANS 2001 , 2359 - 2365
    18. 18)
      • W.R. Hahn , S.A. Tretter .
        18. Hahn, W.R., Tretter, S.A.: ‘Optimum processing for delay-vector estimation in passive signal arrays’, IEEE Trans. Inf. Theory, 1973, 19, (5), pp. 608614 (doi: 10.1109/TIT.1973.1055077).
        . IEEE Trans. Inf. Theory , 5 , 608 - 614
    19. 19)
      • L.R. Rabiner , B.H. Juang . (1993)
        19. Rabiner, L.R., Juang, B.H.: ‘Fundamentals of speech recognition’ (Prentice-Hall Int. Inc., 1993), pp. 141193.
        .
    20. 20)
      • A.R. Hercz . (1987)
        20. Hercz, A.R.: ‘Fundamentals of sound ranging’ (Arthur R. Hercz, USA, 1987, 1st edn.), pp. 789855.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2012.0037
Loading

Related content

content/journals/10.1049/iet-rsn.2012.0037
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address