access icon free Compressive feature and kernel sparse coding-based radar target recognition

In this study, the authors exploit the sparse nature of radar targets, and propose a universal, target-oriented ‘compressive feature’ and kernel sparse coding-based radar target recognition approach via the recent developed compressive sensing theory. Inspired by the visual attention mechanism, pulse contourlet transform is proposed to derive the target-oriented compressive features, and a kernel sparse coding classifier is advanced inspired by the fact that kernel trick can make the features more clustered in higher dimensional space, so resulting in accurate and robust recognition of targets. Some experiments are taken on recognising three types of ground vehicles in the moving and stationary target acquisition and recognition public release database, to compare the performance of the proposed scheme with its counterparts, and the results prove its efficiency.

Inspec keywords: transforms; radar target recognition; encoding; compressed sensing

Other keywords: compressive sensing theory; kernel trick; pulse contourlet transform; higher dimensional space; recognition public release database; kernel sparse coding-based radar target recognition; target-oriented compressive features; visual attention mechanism

Subjects: Codes; Radar equipment, systems and applications; Integral transforms

References

    1. 1)
      • 14. Tello Alonso, M., López-Dekker, P., Mallorquí, J.J.: ‘A novel strategy for radar imaging based on compressive sensing’, EEE Trans. Geosci. Remote Sens., 2010, 48, (12), pp. 42854295 (doi: 10.1109/TGRS.2010.2051231).
    2. 2)
      • 5. Sun, Y., Liu, Z., Todorovic, S., Li, J.: ‘Adaptive boosting for SAR automatic target recognition’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (1), pp. 112125 (doi: 10.1109/TAES.2007.357120).
    3. 3)
      • 17. Hao, X., Xuezhi, H., Zhiping, Y., Dongjin, W., Weidong, C.: ‘Compressive sensing MIMO radar imaging based on inverse scattering model’. IEEE 10th Int. Conf. Signal Processing (ICSP), 24–28 October 2010, pp. 19992002.
    4. 4)
      • 11. Yoon, Y.-S., Amin, M.G.: ‘Through-the-wall radar imaging using compressive sensing along temporal frequency domain’. IEEE Int. Conf. Acoustics Speech and Signal Processing (ICASSP), 2010, 14–19 March 2010, pp. 28062809.
    5. 5)
      • 21. Xie, X.-C.: ‘Real-time measurement in compressive radar imaging based on AIC’. IEEE 10th Int. Conf. Signal Processing (ICSP), 24–28 October 2010, pp. 21132116.
    6. 6)
      • 10. Candès, E.J., Wakin, M.B.: ‘An introduction to compressive sampling’, IEEE Signal Process. Mag., 2008, 25, (2), pp. 2130 (doi: 10.1109/MSP.2007.914731).
    7. 7)
      • 1. Aldhubaib, F., Shuley, N.V.: ‘Radar target recognition based on modified characteristic polarization states’, IEEE Trans. Aerosp. Electron. Syst., 2010, 46, (4), pp. 19211933 (doi: 10.1109/TAES.2010.5595604).
    8. 8)
      • 15. Wang, M., Yang, S., Wan, Y., Wang, J.: ‘High resolution radar imaging based on compressed sensing and fast Bayesian matching pursuit’. 2011 Int. Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping (M2RSM), 10–12 January 2011, pp. 15.
    9. 9)
      • 25. Yu, Y., Wang, B., Zhang, L.: ‘Saliency-based compressive sampling for image signals’, IEEE Signal Process. Lett., 2010, 17, (11), pp. 973976 (doi: 10.1109/LSP.2010.2080673).
    10. 10)
      • 2. Eryildirim, A., Onaran, I.: ‘Pulse Doppler radar target recognition using a two-stage SVM procedure’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (2), pp. 14501457 (doi: 10.1109/TAES.2011.5751269).
    11. 11)
      • 23. Smith, G.E., Diethe, T., Hussain, Z., Shawe-Taylor, J., Hardoon, D.R.: ‘Compressed sampling for pulse Doppler radar’. IEEE Radar Conf., 10–14 May 2010, pp. 887892.
    12. 12)
      • 26. Po, D.D.-Y., Do, M.N.: ‘Directional multiscale modeling of images using the contourlet transform’, IEEE Trans. Image Process., 2006, 15, (6), pp. 16101620 (doi: 10.1109/TIP.2006.873450).
    13. 13)
      • 22. Wright, J., Ganesh, A., Yang, A.Y., Ma, Y.: ‘Robust face recognition via sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 31, (2), pp. 210227 (doi: 10.1109/TPAMI.2008.79).
    14. 14)
      • 28. Keydel, E.R.: ‘MSTAR extended operating conditions’, Proc. SPIE – Int. Soc. Opt. Eng., 1996, 2757, pp. 228242 (doi: 10.1117/12.242059).
    15. 15)
      • 4. Zhao, Q., Jose, C.P.: ‘Support vector machines for SAR automatic target recognition’, IEEE Trans. Aerosp. Electron. Syst., 2001, 37, (2), pp. 643653 (doi: 10.1109/7.937475).
    16. 16)
      • 13. Shastry, M.C., Narayanan, R.M., Rangaswamy, M.: ‘Compressive radar imaging using white stochastic waveforms’. Int. Waveform Diversity and Design Conf. (WDD), 8–13 August 2010, pp. 000090000094.
    17. 17)
      • 6. Juan, W., Lijie, S.: ‘Research on supervised manifold learning for SAR target classification’. IEEE Int. Conf. Computational Intelligence for Measurement Systems and Applications, 2009 (CIMSA'09), 2009, pp. 140142.
    18. 18)
      • 18. Tello, M., Lopez-Dekker, P., Mallorqui, J.J.: ‘A novel strategy for radar imaging based on compressive sensing’. IEEE Int. Geoscience and Remote Sensing Symposium, IGARSS 2008, 7–11 July 2008, pp. II-213II-216.
    19. 19)
      • 9. Donoho, D.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 54065425 (doi: 10.1109/TIT.2006.871582).
    20. 20)
      • 12. Xiaochun, X., Yunhua, Z.: ‘Fast compressive sensing radar imaging based on smoothed L0 norm’. Second Asian-Pacific Conf. Synthetic Aperture Radar, 2009, APSAR 2009, 26–30 October 2009, pp. 443446.
    21. 21)
      • 3. Zhao, Q., Jose, C.P., Victor, B., Xu, D.X., Wang, Z.: ‘Synthetic aperture radar automatic target recognition with three strategies of learning and representation’, Opt. Eng., 2000, 39, (5), pp. 12301244 (doi: 10.1117/1.602495).
    22. 22)
      • 24. Tropp, J.A., Wakin, M.B., Duarte, M.F., Baron, D., Baraniuk, R.G.: ‘Random filters for compressive sampling and reconstruction’. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 14–19 May 2006, vol. 3, pp. III.
    23. 23)
      • 8. Thiagarajan, J.J., Ramamurthy, K.N., Knee, P., Spanias, A., Berisha, V.: ‘Sparse representation for automatic target classification in SAR images’. 2010 Fourth Int. Six Symp. ISCCSP, May 2010.
    24. 24)
      • 27. Cristianini, N., Shawe-Taylor, J.: ‘An introduction to support vector machines and other kernel-based learning methods’ (Cambridge University Press, 2000).
    25. 25)
      • 16. Anitori, L., Otten, M., Hoogeboom, P.: ‘Compressive sensing for high resolution radar imaging’. Proc. Asia-Pacific Microwave Conf. (APMC), 7–10 December 2010, pp. 18091812.
    26. 26)
      • 20. Michael, L., Christian, D., Zoubir, A.M.: ‘Compressive sensing in through-the-wall radar imaging’. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), 22–27 May 2011, pp. 40084011.
    27. 27)
      • 19. Zhang, L., Xing, M., Qiu, C.-W., et al: ‘Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing’, IEEE Trans. Geosci. Remote Sens., 2010, 48, (10), pp. 38243838 (doi: 10.1109/TGRS.2010.2048575).
    28. 28)
      • 29. Cover, T.M., Hart, P.E.: ‘Nearest neighbor pattern classification’, IEEE Trans. Inf. Theory, 1967, 13, (1), pp. 2127 (doi: 10.1109/TIT.1967.1053964).
    29. 29)
      • 7. Baraniuk, R., Steeghs, P.: ‘Compressive radar imaging’. Proc. IEEE Radar Conf., Waltham, MA, April 2007, pp. 128133.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2012.0034
Loading

Related content

content/journals/10.1049/iet-rsn.2012.0034
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading