http://iet.metastore.ingenta.com
1887

Compressive feature and kernel sparse coding-based radar target recognition

Compressive feature and kernel sparse coding-based radar target recognition

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors exploit the sparse nature of radar targets, and propose a universal, target-oriented ‘compressive feature’ and kernel sparse coding-based radar target recognition approach via the recent developed compressive sensing theory. Inspired by the visual attention mechanism, pulse contourlet transform is proposed to derive the target-oriented compressive features, and a kernel sparse coding classifier is advanced inspired by the fact that kernel trick can make the features more clustered in higher dimensional space, so resulting in accurate and robust recognition of targets. Some experiments are taken on recognising three types of ground vehicles in the moving and stationary target acquisition and recognition public release database, to compare the performance of the proposed scheme with its counterparts, and the results prove its efficiency.

References

    1. 1)
      • F. Aldhubaib , N.V. Shuley .
        1. Aldhubaib, F., Shuley, N.V.: ‘Radar target recognition based on modified characteristic polarization states’, IEEE Trans. Aerosp. Electron. Syst., 2010, 46, (4), pp. 19211933 (doi: 10.1109/TAES.2010.5595604).
        . IEEE Trans. Aerosp. Electron. Syst. , 4 , 1921 - 1933
    2. 2)
      • A. Eryildirim , I. Onaran .
        2. Eryildirim, A., Onaran, I.: ‘Pulse Doppler radar target recognition using a two-stage SVM procedure’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (2), pp. 14501457 (doi: 10.1109/TAES.2011.5751269).
        . IEEE Trans. Aerosp. Electron. Syst. , 2 , 1450 - 1457
    3. 3)
      • Q. Zhao , C.P. Jose , B. Victor , D.X. Xu , Z. Wang .
        3. Zhao, Q., Jose, C.P., Victor, B., Xu, D.X., Wang, Z.: ‘Synthetic aperture radar automatic target recognition with three strategies of learning and representation’, Opt. Eng., 2000, 39, (5), pp. 12301244 (doi: 10.1117/1.602495).
        . Opt. Eng. , 5 , 1230 - 1244
    4. 4)
      • Q. Zhao , C.P. Jose .
        4. Zhao, Q., Jose, C.P.: ‘Support vector machines for SAR automatic target recognition’, IEEE Trans. Aerosp. Electron. Syst., 2001, 37, (2), pp. 643653 (doi: 10.1109/7.937475).
        . IEEE Trans. Aerosp. Electron. Syst. , 2 , 643 - 653
    5. 5)
      • Y. Sun , Z. Liu , S. Todorovic , J. Li .
        5. Sun, Y., Liu, Z., Todorovic, S., Li, J.: ‘Adaptive boosting for SAR automatic target recognition’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (1), pp. 112125 (doi: 10.1109/TAES.2007.357120).
        . IEEE Trans. Aerosp. Electron. Syst. , 1 , 112 - 125
    6. 6)
      • W. Juan , S. Lijie .
        6. Juan, W., Lijie, S.: ‘Research on supervised manifold learning for SAR target classification’. IEEE Int. Conf. Computational Intelligence for Measurement Systems and Applications, 2009 (CIMSA'09), 2009, pp. 140142.
        . IEEE Int. Conf. Computational Intelligence for Measurement Systems and Applications, 2009 (CIMSA'09) , 140 - 142
    7. 7)
      • R. Baraniuk , P. Steeghs .
        7. Baraniuk, R., Steeghs, P.: ‘Compressive radar imaging’. Proc. IEEE Radar Conf., Waltham, MA, April 2007, pp. 128133.
        . Proc. IEEE Radar Conf. , 128 - 133
    8. 8)
      • J.J. Thiagarajan , K.N. Ramamurthy , P. Knee , A. Spanias , V. Berisha .
        8. Thiagarajan, J.J., Ramamurthy, K.N., Knee, P., Spanias, A., Berisha, V.: ‘Sparse representation for automatic target classification in SAR images’. 2010 Fourth Int. Six Symp. ISCCSP, May 2010.
        . 2010 Fourth Int. Six Symp. ISCCSP
    9. 9)
      • D. Donoho .
        9. Donoho, D.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 54065425 (doi: 10.1109/TIT.2006.871582).
        . IEEE Trans. Inf. Theory , 4 , 5406 - 5425
    10. 10)
      • E.J. Candès , M.B. Wakin .
        10. Candès, E.J., Wakin, M.B.: ‘An introduction to compressive sampling’, IEEE Signal Process. Mag., 2008, 25, (2), pp. 2130 (doi: 10.1109/MSP.2007.914731).
        . IEEE Signal Process. Mag. , 2 , 21 - 30
    11. 11)
      • Y.-S. Yoon , M.G. Amin .
        11. Yoon, Y.-S., Amin, M.G.: ‘Through-the-wall radar imaging using compressive sensing along temporal frequency domain’. IEEE Int. Conf. Acoustics Speech and Signal Processing (ICASSP), 2010, 14–19 March 2010, pp. 28062809.
        . IEEE Int. Conf. Acoustics Speech and Signal Processing (ICASSP), 2010 , 2806 - 2809
    12. 12)
      • X. Xiaochun , Z. Yunhua .
        12. Xiaochun, X., Yunhua, Z.: ‘Fast compressive sensing radar imaging based on smoothed L0 norm’. Second Asian-Pacific Conf. Synthetic Aperture Radar, 2009, APSAR 2009, 26–30 October 2009, pp. 443446.
        . Second Asian-Pacific Conf. Synthetic Aperture Radar, 2009, APSAR 2009 , 443 - 446
    13. 13)
      • M.C. Shastry , R.M. Narayanan , M. Rangaswamy .
        13. Shastry, M.C., Narayanan, R.M., Rangaswamy, M.: ‘Compressive radar imaging using white stochastic waveforms’. Int. Waveform Diversity and Design Conf. (WDD), 8–13 August 2010, pp. 000090000094.
        . Int. Waveform Diversity and Design Conf. (WDD) , 000090 - 000094
    14. 14)
      • M. Tello Alonso , P. López-Dekker , J.J. Mallorquí .
        14. Tello Alonso, M., López-Dekker, P., Mallorquí, J.J.: ‘A novel strategy for radar imaging based on compressive sensing’, EEE Trans. Geosci. Remote Sens., 2010, 48, (12), pp. 42854295 (doi: 10.1109/TGRS.2010.2051231).
        . EEE Trans. Geosci. Remote Sens. , 12 , 4285 - 4295
    15. 15)
      • M. Wang , S. Yang , Y. Wan , J. Wang .
        15. Wang, M., Yang, S., Wan, Y., Wang, J.: ‘High resolution radar imaging based on compressed sensing and fast Bayesian matching pursuit’. 2011 Int. Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping (M2RSM), 10–12 January 2011, pp. 15.
        . 2011 Int. Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping (M2RSM) , 1 - 5
    16. 16)
      • L. Anitori , M. Otten , P. Hoogeboom .
        16. Anitori, L., Otten, M., Hoogeboom, P.: ‘Compressive sensing for high resolution radar imaging’. Proc. Asia-Pacific Microwave Conf. (APMC), 7–10 December 2010, pp. 18091812.
        . Proc. Asia-Pacific Microwave Conf. (APMC) , 1809 - 1812
    17. 17)
      • X. Hao , H. Xuezhi , Y. Zhiping , W. Dongjin , C. Weidong .
        17. Hao, X., Xuezhi, H., Zhiping, Y., Dongjin, W., Weidong, C.: ‘Compressive sensing MIMO radar imaging based on inverse scattering model’. IEEE 10th Int. Conf. Signal Processing (ICSP), 24–28 October 2010, pp. 19992002.
        . IEEE 10th Int. Conf. Signal Processing (ICSP) , 1999 - 2002
    18. 18)
      • M. Tello , P. Lopez-Dekker , J.J. Mallorqui .
        18. Tello, M., Lopez-Dekker, P., Mallorqui, J.J.: ‘A novel strategy for radar imaging based on compressive sensing’. IEEE Int. Geoscience and Remote Sensing Symposium, IGARSS 2008, 7–11 July 2008, pp. II-213II-216.
        . IEEE Int. Geoscience and Remote Sensing Symposium, IGARSS 2008 , II - 213
    19. 19)
      • L. Zhang , M. Xing , C.-W. Qiu .
        19. Zhang, L., Xing, M., Qiu, C.-W., et al: ‘Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing’, IEEE Trans. Geosci. Remote Sens., 2010, 48, (10), pp. 38243838 (doi: 10.1109/TGRS.2010.2048575).
        . IEEE Trans. Geosci. Remote Sens. , 10 , 3824 - 3838
    20. 20)
      • L. Michael , D. Christian , A.M. Zoubir .
        20. Michael, L., Christian, D., Zoubir, A.M.: ‘Compressive sensing in through-the-wall radar imaging’. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), 22–27 May 2011, pp. 40084011.
        . IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP) , 4008 - 4011
    21. 21)
      • X.-C. Xie .
        21. Xie, X.-C.: ‘Real-time measurement in compressive radar imaging based on AIC’. IEEE 10th Int. Conf. Signal Processing (ICSP), 24–28 October 2010, pp. 21132116.
        . IEEE 10th Int. Conf. Signal Processing (ICSP) , 2113 - 2116
    22. 22)
      • J. Wright , A. Ganesh , A.Y. Yang , Y. Ma .
        22. Wright, J., Ganesh, A., Yang, A.Y., Ma, Y.: ‘Robust face recognition via sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 31, (2), pp. 210227 (doi: 10.1109/TPAMI.2008.79).
        . IEEE Trans. Pattern Anal. Mach. Intell. , 2 , 210 - 227
    23. 23)
      • G.E. Smith , T. Diethe , Z. Hussain , J. Shawe-Taylor , D.R. Hardoon .
        23. Smith, G.E., Diethe, T., Hussain, Z., Shawe-Taylor, J., Hardoon, D.R.: ‘Compressed sampling for pulse Doppler radar’. IEEE Radar Conf., 10–14 May 2010, pp. 887892.
        . IEEE Radar Conf. , 887 - 892
    24. 24)
      • J.A. Tropp , M.B. Wakin , M.F. Duarte , D. Baron , R.G. Baraniuk .
        24. Tropp, J.A., Wakin, M.B., Duarte, M.F., Baron, D., Baraniuk, R.G.: ‘Random filters for compressive sampling and reconstruction’. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 14–19 May 2006, vol. 3, pp. III.
        . IEEE Int. Conf. Acoustics, Speech and Signal Processing , III
    25. 25)
      • Y. Yu , B. Wang , L. Zhang .
        25. Yu, Y., Wang, B., Zhang, L.: ‘Saliency-based compressive sampling for image signals’, IEEE Signal Process. Lett., 2010, 17, (11), pp. 973976 (doi: 10.1109/LSP.2010.2080673).
        . IEEE Signal Process. Lett. , 11 , 973 - 976
    26. 26)
      • D.D.-Y. Po , M.N. Do .
        26. Po, D.D.-Y., Do, M.N.: ‘Directional multiscale modeling of images using the contourlet transform’, IEEE Trans. Image Process., 2006, 15, (6), pp. 16101620 (doi: 10.1109/TIP.2006.873450).
        . IEEE Trans. Image Process. , 6 , 1610 - 1620
    27. 27)
      • N. Cristianini , J. Shawe-Taylor . (2000)
        27. Cristianini, N., Shawe-Taylor, J.: ‘An introduction to support vector machines and other kernel-based learning methods’ (Cambridge University Press, 2000).
        .
    28. 28)
      • E.R. Keydel .
        28. Keydel, E.R.: ‘MSTAR extended operating conditions’, Proc. SPIE – Int. Soc. Opt. Eng., 1996, 2757, pp. 228242 (doi: 10.1117/12.242059).
        . Proc. SPIE – Int. Soc. Opt. Eng. , 228 - 242
    29. 29)
      • T.M. Cover , P.E. Hart .
        29. Cover, T.M., Hart, P.E.: ‘Nearest neighbor pattern classification’, IEEE Trans. Inf. Theory, 1967, 13, (1), pp. 2127 (doi: 10.1109/TIT.1967.1053964).
        . IEEE Trans. Inf. Theory , 1 , 21 - 27
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2012.0034
Loading

Related content

content/journals/10.1049/iet-rsn.2012.0034
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address