Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Comparison of the estimation performance of coherent and non-coherent ambiguity functions for an ultrawideband multi-input–multi-output noise radar

Comparison of the estimation performance of coherent and non-coherent ambiguity functions for an ultrawideband multi-input–multi-output noise radar

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors start by analysing the mean square error (MSE) of target velocity and location estimation in ultrawideband (UWB) multi-input–multi-output (MIMO) noise radar. In the authors' system architecture, transmit antennas are illuminated by UWB-independent noise waveforms to meet the requirement of MIMO spatial diversity. The ambiguity function (AF) formulation is applied to implement the estimations. Since the maximum value of the AF is attained when the time-delay and Doppler stretch of replica signals are exactly matched with the ones corresponding to the reflections, this estimation is also a peak localisation problem. When noise is added, the peak may be located in a different place causing error. In this study, the authors formulate probability density functions (pdfs) to approximate the distributions of coherent and non-coherent ambiguity functions (CAFs and NCAFs) that are then applied to analyse MSE of their estimates. The pdfs are also applied to analyse the detection performance based on different AF approaches. Based on the analyses, the authors demonstrate that the NCAF-based estimation is a better approach in spatial diversity MIMO radars.

References

    1. 1)
      • Dai, X.-Z., Xu, J., Peng, Y.-N., Xia, X.-G.: `A new method of improving the weak target detection performance based on the MIMO radar', Proc. Int. Conf. on Radar, October 2006, Shanghai, China, doi: 10.1109/ICR.2006.343265.
    2. 2)
    3. 3)
    4. 4)
      • J.A. Smit , W.B.S.M. Kneefel . RUDAR – an experimental noise radar system. De Ingenieur , 32 , 99 - 110
    5. 5)
      • Stephan, R., Loele, H.: `Theoretical and practical characterization of a broadband random noise radar', IEEE MTT-S Int. Microwave Symp. Digest, June 2000, Boston, MA, p. 1555–1558.
    6. 6)
      • Ware, R., Lad, F.: `Approximating the distribution for sums of products of normal variables', Research Report, Canterbury Univesity, 2003.
    7. 7)
    8. 8)
      • Gray, D.A., Capria, A.: `MIMO noise radar – matched filters and coarrays', Proc. IEEE Radar Conf., May 2008, Rome, Italy, doi: 10.1109/RADAR.2008.4721068.
    9. 9)
      • Walton, E.K., Fillimon, V., Gunawan, S.: `ISAR imaging using UWB noise radar', Proc. 18th Annual AMTA Symp., September–October 1996, Seattle, WA, p. 167–171.
    10. 10)
      • Sinitsyn, R.B.: `Copula based detection algorithm for MIMO ultrawideband noise radars', Proc. Sixth European Radar Conf., September–October 2009, Rome, Italy, p. 121–124.
    11. 11)
      • Lehmann, N.H., Haimovich, A.M., Blum, R.S., Cimini, L.J.: `High resolution capabilities of MIMO radar', Proc. 40th Asilomar Conf. on Signals, Systems and Computers, October–November 2006, Pacific Grove, CA, p. 25–30.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • G.H. Robertson . A fast amplitude approximation for quadrature pairs. Bell Syst. Tech. J. , 8 , 2849 - 2852
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • Turner, L.: `The evolution of featureless waveforms for LPI communications', Proc. IEEE 1991 National Aerospace and Electronics Conf. (NAECON), May 1991, Dayton, OH, p. 1325–1331.
    20. 20)
    21. 21)
      • P. Billingsley . (1995) Probability and measure.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • Narayanan, R.M., Xu, Y., Hoffmeyer, P.D., Curtis, J.O.: `Design and performance of a polarimetric random noise on radar for detection of shallow buried targets', Proc. SPIE Conf. Detection Technologies for Mines and Minelike Targets, April 1995, Orlando, FL, p. 20–30.
    27. 27)
      • Cooper, G.R., McGillem, C.D.: `Random signal radar', Final Report TR-EE67-11, 1967.
    28. 28)
      • Gray, D.A., Fry, R.: `MIMO noise radar – element and beam space comparisons', Proc. Int. Waveform Diversity and Design Conf., June 2007, Pisa, Italy, p. 344–347.
    29. 29)
    30. 30)
      • Lukin, K.A.: `Ka-band noise radar', Proc. Int. Symp. on Physics and Engineering of Millimeter and Submillimeter Waves, June 1994, Kharkov, Ukraine, p. 322–324.
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • Chen, W.-J.: `Detection and estimation in ultrawideband MIMO noise radar', 2010, PhD, Pennsylvania State University.
    35. 35)
      • Gray, D.A.: `Multi-channel noise radar', Proc. Int. Radar Symp., May 2006, Krakow, Poland, doi: 10.1109/IRS.2006.4338086.
    36. 36)
    37. 37)
    38. 38)
      • Levitt, B.K., Morris, G.A.: `An improved digital algorithm for fast amplitude approximations of quadrature pairs', NASA DSN Progress Report, 1977, p. 97–101, vol. 42-40.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2010.0233
Loading

Related content

content/journals/10.1049/iet-rsn.2010.0233
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address