http://iet.metastore.ingenta.com
1887

Sparse representation-based synthetic aperture radar imaging

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article PDF
$23.94
Buy Knowledge Pack
10 articles for $144.00

Abstract

There is increasing interest in using synthetic aperture radar (SAR) images in automated target recognition and decision-making tasks. The success of such tasks depends on how well the reconstructed SAR images exhibit certain features of the underlying scene. Based on the observation that typical underlying scenes usually exhibit sparsity in terms of such features, this paper presents an image formation method that formulates the SAR imaging problem as a sparse signal representation problem. For problems of complex-valued nature, such as SAR, a key challenge is how to choose the dictionary and the representation scheme for effective sparse representation. Since features of the SAR reflectivity magnitude are usually of interest, the approach is designed to sparsely represent the magnitude of the complex-valued scattered field. This turns the image reconstruction problem into a joint optimisation problem over the representation of magnitude and phase of the underlying field reflectivities. The authors develop the mathematical framework for this method and propose an iterative solution for the corresponding joint optimisation problem. The experimental results demonstrate the superiority of this method over previous approaches in terms of both producing high-quality SAR images and exhibiting robustness to uncertain or limited data.

References

    1. 1)
      • W.G. Carrara , R.S. Goodman , R.M. Majewski . (1995) Spotlight synthetic aperture radar: signal processing algorithms.
    2. 2)
      • M. Çetin , W.C. Karl . Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization. IEEE Trans. Image Process. , 4 , 623 - 631
    3. 3)
      • 1 onward link is available for this reference.
      • CrossRef
    4. 4)
      • A.C. Kak , M. Slaney . (1988) Principles of computerized tomographic imaging.
    5. 5)
      • Çetin, M., Moses, R.L.: `SAR imaging from partial-aperture data with frequency-band omissions', SPIE Defense and Security Symposium, Algorithms for Synthetic Aperture Radar Imagery XII, March 2005, Orlando, FL, USA, p. 32–43.
    6. 6)
      • 1 onward link is available for this reference.
      • CrossRef
    7. 7)
      • D.L. Donoho , X. Huo . Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory , 7 , 2845 - 2862
    8. 8)
      • D.L. Donoho , M. Elad . Maximal sparsity representation via l1 minimization. Proc. Natl. Acad. Sci. , 2197 - 2202
    9. 9)
      • 1 onward link is available for this reference.
      • CrossRef
    10. 10)
      • R. Chartrand . Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. , 10 , 707 - 710
    11. 11)
      • Malioutov, D.M., Cetin, M., Willsky, A.S.: `Optimal sparse representations in general overcomplete bases', IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), May 2004, p. 793–796.
    12. 12)
      • S.M. Kay . (1993) Fundamentals of statistical signal processing: estimation theory.
    13. 13)
      • B. Borden . Maximum entropy regularization in inverse synthetic aperture radar imagery. IEEE Trans. Signal Process. , 4 , 969 - 973
    14. 14)
      • D.L. Mensa . (1981) High resolution radar imaging.
    15. 15)
      • 1 onward link is available for this reference.
      • CrossRef
    16. 16)
      • C.R. Vogel , M.E. Oman . Iterative methods for total variation denoising. SIAM J. Sci. Comput. , 1 , 227 - 238
    17. 17)
      • G.H. Golub , C.F. Van Loan . (1989) Matrix computations.
    18. 18)
      • M. Çetin , W.C. Karl , A.S. Willsky . Feature-preserving regularization method for complex-valued inverse problems with application to coherent imaging. Opt. Eng. , 1
    19. 19)
      • D. Geman , C. Yang . Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image Process. , 7 , 932 - 946
    20. 20)
      • 1 onward link is available for this reference.
      • CrossRef
    21. 21)
      • D.L. Donoho , I.M. Johnstone . Ideal spatial adaptation via wavelet shrinkage. Biometrika , 425 - 455
    22. 22)
      • Z. Zeng , I.G. Cumming . SAR image data compression using a tree-structured wavelet transform. IEEE Trans. Geosci. Remote Sens. , 3 , 546 - 552
    23. 23)
      • Rilling, G., Davies, M., Mulgrew, B.: `Compressed sensing based compression of SAR raw data', Signal Processing with Adaptive Sparse Structured Representations Workshop, April 2009, Saint-Malo, France.
    24. 24)
      • J.-L. Starck , E. Candès , D.L. Donoho . The curvelet transform for image denoising. IEEE Trans. Image Process. , 6 , 131 - 141
    25. 25)
      • Batu, O., Çetin, M.: `Hyper-parameter selection in non-quadratic regularization-based radar image formation', SPIE Defense and Security Symp., Algorithms for Synthetic Aperture Radar Imagery XV, March 2008, Orlando, FL, USA.
    26. 26)
      • F. Argenti , L. Alparone . Speckle removal from SAR images in the undecimated wavelet domain. IEEE Trans. Geosci. Remote Sens. , 11 , 2363 - 2374
    27. 27)
      • M. Çetin , W.C. Karl , D.A. Castañon . Feature enhancement and ATR performance using non-quadratic optimization-based SAR imaging. IEEE Trans. Aerospace Electr. Syst. , 4 , 1375 - 1395
    28. 28)
      • L.G. Clark , W.J. Velten . Image characterization for automatic target recognition algorithm evaluations. Opt. Eng. , 2 , 147 - 153
    29. 29)
      • G.R. Benitz . High-definition vector imaging. Lincoln Lab. J. , 2 , 147 - 170
    30. 30)
      • J. Wang , X. Liu . SAR minimum-entropy autofocus using an adaptive-order polynomial model. IEEE Trans. Geosci. Remote Sens. , 4 , 512 - 516
    31. 31)
      • Air Force Research Laboratory, Model Based Vision Laboratory, Sensor Data Management System ADTS: http://www.mbvlab.wpafb.af.mil/public/sdms/datasets/adts/.
    32. 32)
      • Backhoe Data Sample & Visual-D Challenge Problem, Air Force Research Laboratory, Sensor Data Management System: https://www.sdms.afrl.af.mil/main.htm.
    33. 33)
      • Moses, R.L., Potter, L.C., Cetin, M.: `Wide angle SAR imaging', Proc. SPIE, Algorithms for Synthetic Aperture Radar Imagery XI, April 2004, Orlando, FL, USA, p. 164–175.
    34. 34)
      • A. Papoulis . (1965) Probability, random variables, and stochastic processes.

Related content

content/journals/10.1049/iet-rsn.2009.0235
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address