Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

GMTI clutter cancellation using real non-ideal data

GMTI clutter cancellation using real non-ideal data

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The performance of displaced phase centre antenna (DPCA), adaptive DPCA (ADPCA) and joint domain localised space time adaptive processing (JDL-STAP) was examined when applied to data that were not gathered for ground moving target indication (GMTI) purposes, and using very few array elements. Three different methods to be applied at the pre-processing stage to match pulses from different spatial channels were compared. The ADPCA method was shown to be the most robust in the presence of signals leaked from other range cells while traditional DPCA proved to be the most effective at attenuating stationary targets in non-ideal conditions, providing that pre-processing, using a pulse shift and a ramp in phase, was applied to the data. Quantitative results are presented, which are drawn from real experiments using real airborne radar data and which provide a valuable insight into the tolerance of DPCA, ADPCA and STAP when put to use with few spatial channels on non-ideal data. The study shows that all three GMTI algorithms used with few antenna elements can successfully resolve moving targets from clutter in such data and discusses the limitations of each in suppressing unwanted stationary peaks.

References

    1. 1)
      • P.G. Richardson . Analysis of the adaptive space time processing technique for airborne radar. IEE Proc., Sonar Navig. , 4 , 187 - 195
    2. 2)
      • Berin, M.O., Haimovich, A.M.: `Signal cancellation effects in adaptive radar mountaintop data-set', IEEE Proc. ICASSP-96, 1996, 5, p. 2614–2617.
    3. 3)
      • Dong, Y.: `Phased array radar data processing using adaptive displaced phase centre antenna principle', Report DSTO-RR-0334, December 2007.
    4. 4)
      • Nohara, T.: `Comparison of DPCA and STAP for space-based radar', IEEE Radar Conf. 1995, May 1995, p. 113–118.
    5. 5)
      • Ward, J.: `Cramr–Rao bounds for target angle and Doppler estimation with space–time adaptive processing radar', 1995 Conf. 29th Asilomar Conf. on Signals, Systems and Computers, October 1995, p. 1198–1212.
    6. 6)
      • R. Bracewell . (1965) The Fourier transform and its applications.
    7. 7)
      • R.A. Monzingo , T.W. Miller . (1980) Introduction to adaptive arrays.
    8. 8)
      • H. Wang , L. Cai . On adaptive spatial-temporal processing for airborne surveillance radar systems. IEEE Trans. AES , 3 , 660 - 670
    9. 9)
      • Wicks, M., Wang, H., Cai, L.: `A comparative study of clutter rejection techniques in airborne radar', National Telesystems Conf., May 1992.
    10. 10)
      • Blum, R.S., Melvin, W.L., Wicks, M.C.: `An analysis of adaptive DPCA', IEEE Radar Conf. 1996, May 1996, p. 303–308.
    11. 11)
      • E.C. Barile , R.L. Fante , J.A. Torres . Some limitations on the effectiveness of airborne adaptive radar. IEEE Trans. AES , 4 , 1015 - 1031
    12. 12)
      • Ravan, M., Saleh, O., Adve, R.S., Plataniotis, K., Missailidis, P.: `KBSTAP implementation for HFSWR', Final Report Contract No. W7714-060999/001/SV, March 2008, p. 44–48.
    13. 13)
      • R.S. Adve , T.B. Hale , M.C. Wicks . Practical joint domain localised adaptive processing in homogenous and non-homogenous environments. I: homogenous environments. IEE Proc. Radar, Sonar, Navig. , 2 , 57 - 65
    14. 14)
      • L.E. Brennan . Theory of adaptive radar. IEE Trans. , 2 , 237 - 251
    15. 15)
      • R. Klemm . (1998) Space–time adaptive processing principles and applications.
    16. 16)
      • J.R. Guerci . (2003) Space–time adaptive processing for radar.
    17. 17)
      • L.E. Brennan , J.D. Mallett , I.S. Reed . Adaptive arrays in airborne MTI radar. IEEE Trans. , 5 , 607 - 615
    18. 18)
      • Seliktar, Y., Williams, D.B., McClellan, J.H.: `Evaluation of partially adaptive STAP algorithms on the mountain top dataset', IEEE Proc. ICASSP-96, 1996, 2, p. 1169–1172.
    19. 19)
      • Fischman, M.A., Simard, M., Andraka, R.: `Ultrafast processor for interferometric radar', NASA Tech Briefs, NASA, March 2006, p. 14.
    20. 20)
      • Gu, Z., Blum, R.S., Melvin, W.L., Wicks, M.C.: `Comparison of STAP algorithms for airborne radar', IEEE Radar Conf. 1997, May 1997, p. 60–65.
    21. 21)
      • Kealey, P.G., Finley, I.P.: `Comparison of the radar clutter cancellation performance of post- and pre-Doppler STAP for ground moving target identification from an experimental airborne surveillance radar', IEEE Radar Conf. 2004, April 2004, p. 480–485.
    22. 22)
      • Belkacemi, H., Marcos, S.: `Fast iterative subspace algorithms for airborne STAP radar', EURASIP J. Appl. Signal Process., 2006, 2006, p. 1–8.
    23. 23)
      • Le Chevalier, F., Savy, L., Durniez, F.: `Clutter calibration for space–time airborne MTI radars', CIE Int. Radar Conf., October 1996, Beijing, p. 82–85.
    24. 24)
      • C.E. Muehe , M. Labitt . Displaced phase center antenna technique. Lincoln Lab. J. , 2 , 281 - 296
    25. 25)
      • Coe, D.J., White, R.G.: `Moving target detection in SAR imagery: experimental results', IEEE Radar Conf. 1995, May 1995, p. 644–649.
    26. 26)
      • G. Morris , L. Harkness . (1996) Airborne pulsed Doppler radar.
    27. 27)
      • Y-L. Wang , Y-N. Peng , Z. Bao . Space–time adaptive processing for airborne radar with various array orientations. IEE Proc. Radar, Sonar Navig. , 6 , 330 - 340
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2009.0057
Loading

Related content

content/journals/10.1049/iet-rsn.2009.0057
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address