Overview of different wind generator systems and their comparisons

Overview of different wind generator systems and their comparisons

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

With rapid development of wind power technologies and significant growth of wind power capacity installed worldwide, various wind turbine concepts have been developed. The wind energy conversion system is demanded to be more cost-competitive, so that comparisons of different wind generator systems are necessary. An overview of different wind generator systems and their comparisons are presented. First, the contemporary wind turbines are classified with respect to both their control features and drive train types, and their strengths and weaknesses are described. The promising permanent magnet generator types are also investigated. Then, the quantitative comparison and market penetration of different wind generator systems are presented. Finally, the developing trends of wind generator systems and appropriate comparison criteria are discussed. It is shown that variable speed concepts with power electronics will continue to dominate and be very promising technologies for large wind farms. The future success of different wind turbine concepts may strongly depend on their ability of complying with both market expectations and the requirements of grid utility companies.


    1. 1)
      • Wind energy-the world's fastest growing energy source
    2. 2)
      • ‘Global wind energy council (GWEC) global wind 2006 report’. available at:
    3. 3)
      • Wind turbine concept market penetration over 10 years (1995–2004)
    4. 4)
      • Erlich, I., Winter, W., Dittrich, A.: `Advanced grid requirements for the integration of wind turbines into the German transmission system', IEEE Power Engineering Society General Meeting, 18–22 June 2006
    5. 5)
      • Wind turbines-a cost effective power source
    6. 6)
    7. 7)
      • Large wind turbines design and economics
    8. 8)
      • Multibrid technology – a significant step to multi-megawatt wind turbines
    9. 9)
    10. 10)
      • Hansen, L.H., Helle, L., Blaabjerg, F.: `Conceptual survey of generators and power electronics for wind turbines', Riso National Laboratory, Technical Report Riso-R-1205(EN), December 2001, Roskilde, Denmark
    11. 11)
      • Developments in wind turbine generator systems
    12. 12)
      • Dubois, M.R., Polinder, H., Ferreira, J.A.: `Comparison of generator topologies for direct-drive wind turbines', Proc. Nordic Countries Power and Industrial Electronics Conf. (NORPIE), June 2000, Aalborg, Denmark
    13. 13)
      • Carlson, O., Grauers, A., Svensson, J.: `A comparison of electrical systems for variable speed operation of wind turbines', European wind energy conf., 1994, p. 500–505
    14. 14)
      • Bywaters, G., John, V., Lynch, J.: `Northern power systems windPACT drive train alternative design study report.', Report no. NREL/SR-500-35524, NREL, October 2004, Golden, Colorado
    15. 15)
      • Soens, J.: `Impact of wind energy in a future', December 2005, PhD, Wettelijk depot, UDC 621.548
    16. 16)
      • Dubois, M.R.: `Optimized permanent magnet generator topologies for direct-drive wind turbines', 2004, PhD, Delft University Technology, Delft, The Netherlands
    17. 17)
      • Grauers, A.: `Design of direct-driven permanent-magnet generators for wind turbines', 1996, PhD, Chalmers University of Technology, Goteburg
    18. 18)
      • Versteegh, C.J.A., Hassan, G.: `Design of the Zephyros Z72 wind turbine with emphasis on the direct drive PM generator', NORPIE 2004NTNU, 14–16 June 2004, Trondheim Norway
    19. 19)
      • PM wind generator topologies
    20. 20)
      • Design and finite-element analysis of an outer rotor permanent-magnet generator for directly-coupled wind turbine applications
    21. 21)
      • Hanitsch, R., Korouji, G.: `Design and constructing of a permanent magnet wind energy generator with a new topology', KOMEL Conf., May 2004, Poland, p. 63–66
    22. 22)
      • Aydin, M., Huang, S., Lipo, T.A.: `Axial flux permanent magnet disc machines: a review', Research Report, 2004
    23. 23)
      • Dubois, M.R.: `Review of electromechanical conversion in wind turbines', Repore EPP00.R03, April 2000
    24. 24)
      • Bianchi, N., Lorenzoni, A.: `Performance magnet generators for wind power industry: an overall comparison with traditional generators', Opportunities and Advances in Int. Power generation, 18–20 March 1996, p. 49–54
    25. 25)
      • Widyan, M.S.: `Design, optimization, construction and test of rare-earth permanent-magnet electrical machines with new topology for wind energy applications', July 2006, PhD, Elektrotechnik und Informatik der Technischen Universität, Berlin
    26. 26)
      • Parviainen, A.: `Design of axial-flux permanent-magnet low-speed machines and performance comparison between radial-flux and axial-flux machines', 2005, PhD, Acta universitatis Lappeenrantaensis
    27. 27)
      • Lampola, P.: `Directly driven, low-speed permanent-magnet generators for wind power applications', 2000, PhD, Helsinki University of Technology, Finland
    28. 28)
      • Böhmeke, G., Boldt, R., Beneke, H.: `Geared drive intermediate solutions-comparisons of design features and operating economics', Proc. 1997 Europ. Wind Energy Conf, p. 664–667
    29. 29)
    30. 30)
      • TORUS: a slotless, toroidal-stator, permanent-magnet generator
    31. 31)
    32. 32)
      • Wu, W., Spooner, E., Chalmers, B.J.: `Reducing voltage regulation in toroidal permanent-magnet generators by stator saturation', Proc. 1995 IEE Conf. Elec. Mach. and Drives, p. 385–389
    33. 33)
      • Chen, Y., Pillay, P.: `Axial-flux PM wind generator with a soft magnetic composite core', Proc. 2005 IEEE Conf. Ind. Appl., p. 231–237
    34. 34)
      • Harris, M.R., Pajooman, G.H., Sharkh, S.M.A.: `Comparison of alternative topologies for VRPM(transverse-flux) electrical machines', Proc. 1997 IEE Colloquium on New Topologies for PM Machines, p. 2/1–2/7
    35. 35)
      • Clipper windpower inc., available at:, accessed August, 2007
    36. 36)
      • The electric generators handbook - variable speed generators
    37. 37)
      • Switched reluctance generators and their control
    38. 38)
      • Runcos, F., Carlson, R., Oliveira, A.M.: `Performance analysis of a brushless double fed cage induction generator', Nordic Wind Power Conf. (NWPC04), 1–2 March 2004, Göteborg, Sweden, Chalmers University of Technology
    39. 39)
      • Annon, : `European wind turbine catalogue', European commission, 1996, Brussels, Belgium, p. 64–67
    40. 40)
      • Böhmeke, G., Boldt, R., Beneke, H.: `Geared drive intermediate solutions, comparisons of design features and operating economics', Proc. 1997 Europ. Wind Energy Conf., p. 664–667
    41. 41)
      • Poore, R., Lettenmaier, T.: `Alternative design study report: windPACT advanced wind turbine drive train designs study', Report no. NREL/SR-500-33196, NREL, August 2003, Golden, Colorado
    42. 42)
      • ENERCON GmbH, available at:, accessed November 2006
    43. 43)
      • Winwind OY, available at:, accessed September 2006
    44. 44)
      • Harakosan Europe BV, available at:, accessed November 2006
    45. 45)
      • Vestas wind systems, available at:, accessed September 2006
    46. 46)
      • Siemens AG, available at:, accessed September 2006
    47. 47)
      • Repower systems AG, available at:, accessed September 2006
    48. 48)
      • Nordex AG, available at:, accessed September 2006
    49. 49)
      • Multibrid, available at:, accessed September 2006
    50. 50)
      • GE energy, available at:, accessed September 2006
    51. 51)
      • Gamesa Elórica, available at:, accessed September 2006
    52. 52)
      • Ecotècnia, available at:, accessed September 2006
    53. 53)
      • DeWind, available at:, accessed September 2006
    54. 54)
      • Suzlon Energy, available at:, accessed September 2006
    55. 55)
      • BTM Consults: ‘International wind energy department – world market update 2004, Forecast 2005–2009’. A. Rasmussens, Ringkøbing, Denmark, 2005
    56. 56)
      • Chen, Z.: `Issues of connecting wind farms into power systems', Proc. 2005 IEEE/PES Transmission and Distribution Conf. and Exhibition: Asia and Pacific (Invited paper panel presentation paper)
    57. 57)
      • SØRensen, P., Bak-Jensen, B., Kristian, J.: `Power plant characteristics of wind farms', Wind Power for the 21st Century Proc. Int. Conf., 2000, Kassel, p. 176–179
    58. 58)
      • Tavner, P.J., Xiang, J.: `Wind turbine reliability, how does it compare with other embedded generation sources', Proc. IEE Rel. Transmission Distrib. Netw. Conf., February 2005, London, UK, p. 243–248
    59. 59)
      • Basic operation principles and electrical conversion systems of wind turbines
    60. 60)
      • Normalized power curves as a tool for identification of optimum wind turbine generator parameters

Related content

This is a required field
Please enter a valid email address