Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Auxiliary dead-band controller for the coordination of fast frequency support from multi-terminal HVDC grids and offshore wind farms

High-voltage direct-current (HVDC) grids may provide fast frequency support to ac grids with the aid of supplementary control algorithms and synthetic inertia contribution from offshore wind farms. However, when all converters within the HVDC grid are fitted with these supplementary controllers, undesirable power flows and reduced power transfers may occur during a power imbalance. This is due to simultaneous frequency oscillations on the different ac systems connected to the HVDC grid arising during the support operation. To prevent this adverse effect, an auxiliary dead-band controller (ADC) is proposed in this study. The ADC modifies the dead-band set-point of the fast frequency controllers using measurements of the rate of change of frequency and frequency deviation. A four-terminal HVDC integrated with an offshore wind farm is modelled to analyse and study the effectiveness of three different supplementary fast frequency control algorithms. Results show that the proposed ADC scheme improves the performance of fast frequency control algorithms. For completeness, a small-signal stability analysis is carried out to confirm that a stable system operation is maintained.

References

    1. 1)
      • 28. Dallmer-Zerbe, K., Spahic, E., Kuhn, G., et al: ‘Fast frequency response in UK grid – challenges and solution’. 13th IET Int. Conf. on AC and DC Power Transmission (ACDC 2017), Manchester, 2017, pp. 16.
    2. 2)
      • 7. Adeuyi, O. D., Cheah-Mane, M., Liang, J., et al: ‘Fast frequency response from offshore multi-terminal VSC-HVDC schemes’, IEEE Trans. Power Deliv., 2017, 32, (6), pp. 24422452.
    3. 3)
      • 2. National Grid: ‘Future energy scenarios: GB gas and electricity transmission’, 2016. Available at http://fes.nationalgrid.com/media/1292/2016-fes.pdf, accessed 11 April 2018.
    4. 4)
      • 8. Gonzalez-Longatt, F., Chikuni, E., Rashayi, E.: ‘Effects of the synthetic inertia from wind power on the total system inertia after a frequency disturbance’. IEEE Int. Conf. on Industrial Technology, Cape Town, 2013, pp. 826832.
    5. 5)
      • 31. Kalcon, G., Adam, G., Anaya-Lara, O., et al: ‘Small-signal stability analysis of multi-terminal VSC-based DC transmission systems’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 18181830.
    6. 6)
      • 19. Jose, K., Adeuyi, O., Liang, J., et al: ‘Coordination of fast frequency support from multi-terminal HVDC grids’. 5th IEEE Int. Energy Conf. (ENERGYCON 2018), Limassol, 2018, pp. 16.
    7. 7)
      • 25. Cheah-mane, M.: ‘Frequency response from DC grids’, 2016 UUEES-UETP course: HVDC technology and HVDC Grids, Barcelona, 2016.
    8. 8)
      • 13. Miao, Z., Fan, L., Osborn, D., et al: ‘Wind farms with HVdc delivery in inertial response and primary frequency control’, IEEE Trans. Energy Convers., 2010, 25, (4), pp. 11711178.
    9. 9)
      • 1. EWEA: ‘Wind energy scenarios for 2030’, EWEA, 2015. Available at: https://www.ewea.org/fileadmin/files/library/publications/reports/EWEA-Wind-energy-scenarios-2030.pdf, accessed 10 December 2017.
    10. 10)
      • 17. Joseph, T., Gonçalves, J., Ugalde-Loo, C. E., et al: ‘Wind-thermal generation coordination in multi-terminal HVDC-connected AC systems for improved frequency support’. 13th IET Int. Conf. on AC and DC Power Transmission (ACDC 2017), Manchester, 2017.
    11. 11)
      • 18. Tamrakar, U., Shrestha, D., Maharjan, M., et al: ‘Virtual inertia: current trends and future directions’, Appl. Sci., 2017, 7, (654), pp. 129.
    12. 12)
      • 4. Bianchi, F. D., Domínguez-García, J. L., Gomis-Bellmunt, O.: ‘Control of multi-terminal HVDC networks towards wind power integration: a review’, Renew. Sustain. Energy Rev., 2016, 55, pp. 10551068.
    13. 13)
      • 26. Díaz-González, F., Hau, M., Sumper, A., et al: ‘Participation of wind power plants in system frequency control: review of grid code requirements and control methods’, Renew. Sustain. Energy Rev., 2014, 34, pp. 551564.
    14. 14)
      • 29. Mu, Y., Wu, J., Ekanayake, J., et al: ‘Primary frequency response from electric vehicles in the Great Britain power system’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 11421150.
    15. 15)
      • 11. Pipelzadeh, Y., Chaudhuri, B., Green, T. C.: ‘Inertial response from remote offshore wind farms connected through VSC-HVDC links: a communication-less scheme’, 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, 2012, pp. 16.
    16. 16)
      • 22. Licari, J., Ugalde-Loo, C. E., Ekayanake, J. B., et al: ‘Damping of torsional vibrations in a variable-speed wind turbine’, IEEE Trans. Energy Convers., 2013, 28, (1), pp. 172180.
    17. 17)
      • 10. CIGRE Working Group B4.58: ‘Control methodologies for direct voltage and power flow in a meshed HVDC grid’, 2017.
    18. 18)
      • 16. Akkari, S., Petit, M., Dai, J., et al: ‘Interaction between the voltage-droop and the frequency-droop control for multi-terminal HVDC systems’, IET Gener. Transm. Distrib., 2016, 10, (6), pp. 13451352.
    19. 19)
      • 30. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994), vol. 7.
    20. 20)
      • 15. Pan-Dian, L., Zhi-Chang, Y., Sheng, C., et al: ‘Review of frequency support control strategies for asynchronous AC systems connected through VSC-HVDC’. 2nd Int. Conf. on Energy, Power and Electrical Engineering (EPEE 2017), Shanghai, 2017, pp. 414421.
    21. 21)
      • 6. Tielens, P., van Hertem, D.: ‘Grid inertia and frequency control in power systems with high penetration of renewables’. Proc. of the 6th IEEE Young Researchers Symp. in Electrical Power Engineering, 2012, pp. 16.
    22. 22)
      • 20. Liang, J., Jing, T., Gomis-Bellmunt, O., et al: ‘Operation and control of multiterminal HVDC transmission for offshore wind farms’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 25962604.
    23. 23)
      • 24. Hansen, A. D., Altin, M., Margaris, I. D., et al: ‘Analysis of the short-term overproduction capability of variable speed wind turbines’, Renew. Energy, 2014, 68, pp. 326336.
    24. 24)
      • 12. Sakamuri, J. N., Altin, M., Hansen, A. D., et al: ‘Coordinated frequency control from offshore wind power plants connected to multi terminal DC system considering wind speed variation’, IET Renew. Power Gener., 2017, 11, (8), pp. 12261236.
    25. 25)
      • 21. Van Hertem, D., Gomis-Bellmunt, O., Liang, J.: ‘HVDC grids - for offshore and supergrid of the future’ (Wiley, New Jersey, 2016, 1st edn.).
    26. 26)
      • 9. Sanz, I. M., Chaudhuri, B., Strbac, G.: ‘Inertial response from offshore wind farms connected through DC grids’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 15181527.
    27. 27)
      • 27. National Grid: ‘System operability framework 2014’, 2014. Available at http://www2.nationalgrid.com/UK/Industry-information/Future-of-Energy/System-Operability-Framework/, accessed: 21 May 2015.
    28. 28)
      • 14. Rafferty, J., Xu, L., Wang, Y., et al: ‘Frequency support using multi-terminal HVDC systems based on DC voltage manipulation’, IET Renew. Power Gener., 2016, 10, (9), pp. 13931401.
    29. 29)
      • 3. Orellana, L., Matilla, V., Wang, S., et al: ‘Fast frequency support control in the GB power system using VSC-HVDC technology’. 7th IEEE Int. Conf. on Innovative Smart Grid Technologies (ISGT Europe 2017), Torino, 2017, pp. 16.
    30. 30)
      • 5. Silva, B., Moreira, C. L., Seca, L., et al: ‘Provision of inertial and primary frequency control services using offshore multiterminal HVDC networks’, IEEE Trans. Sustain. Energy, 2012, 3, (4), pp. 800808.
    31. 31)
      • 23. Jose, K. F., Adeuyi, O. D., Liang, J., et al: ‘Inertial contribution from large scale variable-speed wind turbines connected to the GB grid’. 13th IET Int. Conf. on AC and DC Power Transmission (ACDC 2017), Manchester, 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5485
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5485
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address