access icon free Experimental investigation of the effects of sonication time and volume concentration on the performance of PVT solar collector

In this research, the effects of sonication time and volume concentration of cupric oxide (CuO)/water nanofluids on the thermal conductivity, viscosity and performance of photovoltaic–thermal (PVT) solar collector are investigated experimentally. Pure water, 0.05, 0.1 and 0.2% volume concentrations of CuO/water nanofluids prepared with 1, 2, 3 and 4 h sonication time are used as the heat transfer fluids in this study. The experimental results show that the thermal conductivity and viscosity of nanofluids are the functions of sonication time and volume concentration and using a 0.2 vol.% nanofluid prepared with 4 h sonication time, the thermal conductivity and viscosity were enhanced up to 3.5 and 7.5%, respectively, with respect to the base fluid, whereas for the same volume concentration and sonication time, the observed thermal and electrical efficiencies of the PVT solar collector are 80.7 and 15.1%, respectively, at 12 noon. It was observed that the highest total efficiency of the PVT solar collector of about 95.8% was obtained for 0.2% CuO/water nanofluid and 4 h sonication time at 12 noon.

Inspec keywords: viscosity; heat transfer; nanoparticles; solar absorber-convertors; thermal conductivity; viscometers; copper compounds; nanofluidics; water

Other keywords: electrical efficiencies; volume concentration; thermal efficiencies; viscosity; photovoltaic–thermal solar collector; time 3.0 hour; outdoor condition; time 1.0 hour; time 4.0 hour; sonication time; size 7.0 am; thermal conductivity; PVT solar collector; heat transfer fluids; CuO; time 2.0 hour; volume concentrations; prepared cupric oxide/water nanofluids

Subjects: Applied fluid mechanics; Microfluidics and nanofluidics; Convection and heat transfer; Photothermal conversion

References

    1. 1)
      • 1. Akhavan-Behabadi, M.A., Hekmatipour, F., Mirhabibi, S.M., et al: ‘Experimental investigation of thermal–rheological properties and heat transfer behavior of the heat transfer oil–copper oxide (HTO–CuO) nanofluid in smooth tubes’, Exp. Therm. Fluid Sci., 2015, 68, pp. 681688.
    2. 2)
      • 28. An, W., Wu, J., Zhu, T., et al: ‘Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter’, App. Energy, 2016, 184, pp. 197206.
    3. 3)
      • 10. Kern, Jr.E.C., Russell, M.C.: ‘Combined photovoltaic and thermal hybrid collector system’. Proc. 13th IEEE Photovoltaic Specialist, Washington, DC, 1978, pp. 11531157.
    4. 4)
      • 24. Mohammed, M.F., Abd Rahim, N.: ‘Comparative paper on photovoltaic (PV) and photovoltaic thermal water collector (PVTw)’. Third IET Int. Conf. Clean Energy and Technology (CEAT) 2014, Sarawak, 2014, p. 67(5.), doi: 10.1049/cp.2014.1514.
    5. 5)
      • 26. Yousefi, T., Veysi, F., Shojaeizadeh, E., et al: ‘An experimental investigation on the effects of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors’, Renew. Energy, 2012, 39, pp. 293298.
    6. 6)
      • 32. Sardarabadi, S., Passandideh-Fard, M., Heris, S.Z.: ‘Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)’, Energy, 2014, 66, pp. 264272.
    7. 7)
      • 9. Kazem, H.A., Chaichan, M.T. ‘The impact of using solar colored filters to cover the PV panel on its outcomes’, Sch. Bull., 2016, 2, (7), pp. 464469. Available at http://dx.doi.org/10.21276/sb.2016.2.7.5.
    8. 8)
      • 25. Kamthania, D., Tiwari, G.N.: ‘Performance evaluation of hybrid photovoltaic double pass FaCade connected in series: an ANN approach’. Confluence 2013: The Next Generation Information Technology Summit (Fourth Int. Conf.), Uttar Pradesh, 2013, p. 2.05, doi: 10.1049/cp.2013.2296.
    9. 9)
      • 12. Sopian, K., Yigit, K.S., Liu, H.T., et al: ‘Performance of a double pass photovoltaic thermal solar collector suitable for solar drying systems’, Energy Convers. Manage., 2000, 41, (4), pp. 353365.
    10. 10)
      • 13. Prakash, J.: ‘Transient analysis of a photovoltaic–thermal solar collector for co-generation of electricity and hot air/water’, Energy Convers. Manage., 1994, 35, (11), pp. 967972.
    11. 11)
      • 27. Yousefi, T., Veysi, F., Shojaeizadeh, E., et al: ‘An experimental investigation on the effects of MWCNT-H2O nanofluid on the efficiency of flat-plate solar collectors’, Exp. Thermal Fluid Sci., 2012, 39, pp. 207212.
    12. 12)
      • 11. Sopian, K., Yigit, K.S., Liu, H.T., et al: ‘Performance analysis of photovoltaic thermal air heaters’, Energy Convers. Manage., 1996, 37, (11), pp. 16571670.
    13. 13)
      • 16. Bergene, T, Lovvik, O.M.: ‘Model calculations on a flat plate solar heat collector with integrated solar cells’, Sol. Energy, 1995, 55, (6), pp. 453462.
    14. 14)
      • 5. Farbod, M., Kouhpeymani Asl, R., Abadi, A.R.N.: ‘Morphology dependence of thermal and rheological properties of oil-based nanofluids of CuO nanostructures’, Colloids Surf. A, Physicochem. Eng. Asp., 2015, 474, pp. 7175.
    15. 15)
      • 2. Edalati, Z., Heris, S.Z., Noie, S.H.: ‘The paper of laminar convective heat transfer of CuO/water nanofluid through an equilateral triangular duct at constant wall heat flux’, Heat Transf. -Asian Res., 2012, 41, (5), pp. 418429.
    16. 16)
      • 20. Bahaidarah, H., Subhan, A., Gandhidasan, P., et al: ‘Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions’, Energy, 2013, 59, pp. 445453.
    17. 17)
      • 21. Ibrahim, A., Othman, M.Y., Ruslan, M.H., et al: ‘Performance of photovoltaic thermal collector (PVT) with different absorbers design’, WSEAS Trans. Environ. Dev., 2009, 5, (3), pp. 321330.
    18. 18)
      • 4. Esfe, M.H., Saedodin, S., Akbari, M., et al: ‘Experimental investigation and development of new correlations for thermal conductivity of CuO/EG–water nanofluid’, Int. Commun. Heat Mass Transf., 2015, 65, pp. 4751.
    19. 19)
      • 15. Al Imam, M.F.I., Beg, R.A., Rahman, M.S., et al: ‘Performance of PVT solar collector with compound parabolic concentrator and phase change materials’, Energy Build., 2016, 113, pp. 139144.
    20. 20)
      • 6. Goudarzi, K., Shojaeizadeh, E., Nejati, F.: ‘An experimental investigation on the simultaneous effect of CuO/H2O nanofluid and receiver helical pipe on the thermal efficiency of a cylindrical solar collector’, Appl. Therm. Eng., 2014, 73, pp. 12361243.
    21. 21)
      • 22. Huang, B.J., Lin, T.H., Hung, W.C., et al: ‘Performance evaluation of solar photovoltaic/thermal systems’, Sol. Energy, 2001, 70, (5), pp. 443448.
    22. 22)
      • 18. Gang, P., Hide, F., Tao, Z, et al: ‘A numerical and experimental paper on a heat pipe PV/T system’, Sol. Energy, 2011, 85, pp. 911921.
    23. 23)
      • 14. Ji, J.H., Chow, J.T.T., Yi, H., et al: ‘Effect of fluid flow and packing factor on energy performance of wall-mounted hybrid photovoltaic/water heating collector system’, Energy. Build., 2006, 38, pp. 13801387.
    24. 24)
      • 7. Zhu, H., Han, D., Meng, Z., et al: ‘Preparation and thermal conductivity of CuO nanofluid via a wet chemical method’, Nanoscale Res. Lett., 2011, 6, (181), pp. 16.
    25. 25)
      • 29. Hassani, S., Taylor, R.A., Mekhilef, S., et al: ‘A cascade nanofluid-based PV/T system with optimized optical and thermal properties’, Energy, 2016, 112, pp. 963975.
    26. 26)
      • 30. Al-Shamani, A.N., Sopian, K., Mat, S., et al: ‘Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions’, Energy Convers. Manage., 2016, 124, pp. 528542.
    27. 27)
      • 19. Dubey, S., Sandha, G.S., Tiwari, G.N.: ‘Analytical expression for efficiency of PV/T hybrid air collector’, Appl. Energy, 2009, 86, pp. 697705.
    28. 28)
      • 23. Tarabsheh, A.A., Etier, I., Fath, H., et al: ‘Performance of photovoltaic cells in photovoltaic thermal (PVT) modules’, IET Renew. Power Gener., 2016, 10, (7), pp. 10171023.
    29. 29)
      • 17. Chow, T.T., Pei, G., Fong, K.F., et al: ‘Energy and exergy analysis of photovoltaic and thermal collector with and without glass cover’, Appl. Energy, 2009, 86, pp. 310316.
    30. 30)
      • 8. Hekmatipour, F., Akhavan-Behabadi, M.A., Sajadi, B.: ‘Combined free and forced convection heat transfer of the copper oxide-heat transfer oil (CuO-HTO) nanofluid inside horizontal tubes under constant wall temperature’, Appl. Therm. Eng., 2016, 100, pp. 621627.
    31. 31)
      • 3. Abu-Nada, E., Chamkha, A.J.: ‘Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO–EG–water nanofluid’, Int. J. Thermal Sci., 2010, 49, (12), pp. 23392352.
    32. 32)
      • 31. Al-Waeli, A.-H.A., Sopian, K., Miqdam, C.T., et al: ‘An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system’, Energy Convers. Manage., 2017, 142, pp. 547558.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5283
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5283
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading