access icon free Method for planning a wind–solar–battery hybrid power plant with optimal generation-demand matching

This study aims to propose a methodology for a hybrid wind–solar power plant with the optimal contribution of renewable energy resources supported by battery energy storage technology. The motivating factor behind the hybrid solar–wind power system design is the fact that both solar and wind power exhibit complementary power profiles. Advantageous combination of wind and solar with optimal ratio will lead to clear benefits for hybrid wind–solar power plants such as smoothing of intermittent power, higher reliability, and availability. However, the potential challenges for its integration into electricity grids cannot be neglected. A potential solution is to utilise one of the energy storage technologies, though all of them are still very expensive for such applications, especially at large scale. Therefore, optimal capacity calculations for energy storage system are also vital to realise full benefits. Currently, battery energy storage technology is considered as one of the most promising choices for renewable power applications. This research targets at battery storage technology and proposes a generic methodology for optimal capacity calculations for the proposed hybrid wind–solar power system.

Inspec keywords: energy storage; solar power stations; renewable energy sources; battery storage plants; hybrid power systems; wind power; solar power; wind power plants

Other keywords: solar wind power exhibit complementary power profiles; hybrid wind–solar power system; renewable power applications; optimal capacity calculations; hybrid wind–solar power plant; battery storage technology; wind–solar–battery hybrid power plant; intermittent power; battery energy storage technology; energy storage technologies; hybrid solar–wind power system design; optimal generation-demand; energy storage system; renewable energy resources

Subjects: Reliability; Power system management, operation and economics; Solar power stations and photovoltaic power systems; Wind power plants; Optimisation techniques

References

    1. 1)
      • 6. Lai, C.S., McCulloch, M.D.: ‘Sizing of stand-alone solar PV and storage system with anaerobic digestion biogas power plants’, IEEE Trans. Ind. Electron., 2017, 64, (3), pp. 21122121.
    2. 2)
      • 35. Obi, M., Jensen, S.M., Ferris, J.B., et al: ‘Calculation of levelized costs of electricity for various electrical energy storage systems’, Renew. Sustain. Energy Rev., 2017, 67, pp. 908920.
    3. 3)
      • 17. Zhang, X., Yuan, Y., Hua, L., et al: ‘On generation schedule tracking of wind farms with battery energy storage systems’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 341353.
    4. 4)
      • 7. Kim, I.: ‘Markov chain Monte Carlo and acceptance–rejection algorithms for synthesising short-term variations in the generation output of the photovoltaic system’, IET Renew. Power Gener., 2017, 11, (6), pp. 878888.
    5. 5)
      • 34. Carnegie, R., Gotham, D., Nderitu, D., et al: ‘Utility Scale Energy Storage Systems’, 2013.
    6. 6)
      • 15. Harsha, P., Dahleh, M.: ‘Optimal management and sizing of energy storage under dynamic pricing for the efficient integration of renewable energy’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 11641181.
    7. 7)
      • 21. Kotra, S., Mishra, M.K.: ‘A supervisory power management system for a hybrid microgrid with HESS’, IEEE Trans. Ind. Electron., 2017, 64, (5), pp. 36403649.
    8. 8)
      • 25. Perera, A.T.D., Nik, V.M., Mauree, D., et al: ‘Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid’, Appl. Energy, 2017, 190, pp. 232248.
    9. 9)
      • 10. Solomon, A.A., Kammen, D.M., Callaway, D.: ‘Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria’, Appl. Energy, 2016, 168, pp. 130145.
    10. 10)
      • 3. Dincer, F.: ‘The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy’, Renew. Sustain. Energy Rev., 2011, 15, (1), pp. 713720.
    11. 11)
      • 2. Mason, N.B.: ‘Solar PV yield and electricity generation in the UK’, IET Renew. Power Gener., 2016, 10, (4), pp. 456459.
    12. 12)
      • 33. Zakeri, B., Syri, S.: ‘Electrical energy storage systems: a comparative life cycle cost analysis’, Renew. Sustain. Energy Rev., 2015, 42, pp. 569596.
    13. 13)
      • 23. Nguyen, C.-L., Lee, H.-H.: ‘Effective power dispatch capability decision method for a wind-battery hybrid power system’, IET Gener. Transm. Distrib., 2016, 10, (3), pp. 661668.
    14. 14)
      • 22. Wang, S., Tang, Y., Shi, J., et al: ‘Design and advanced control strategies of a hybrid energy storage system for the grid integration of wind power generations’, IET Renew. Power Gener., 2014, 9, (2), pp. 8998.
    15. 15)
      • 13. Hannan, M.A., Hoque, M.M., Mohamed, A., et al: ‘Review of energy storage systems for electric vehicle applications: issues and challenges’, Renew. Sustain. Energy Rev., 2017, 69, pp. 771789.
    16. 16)
      • 8. Baker, K., Guo, J., Hug, G., et al: ‘Distributed MPC for efficient coordination of storage and renewable energy sources across control areas’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 9921001.
    17. 17)
      • 27. Khatamianfar, A., Khalid, M., Savkin, A.V, et al: ‘Improving wind farm dispatch in the Australian electricity market with battery energy storage using model predictive control’, IEEE Trans. Sustain. Energy, 2013, 4, (3), pp. 745755.
    18. 18)
      • 18. Lakshmanan, M., Rao, S., Sivakumaran, N., et al: ‘A control strategy to enhance the life time of the battery in a stand-alone PV system with DC loads’, IET Power Electron., 2017, 10, (9), pp. 10871094.
    19. 19)
      • 4. Dincer, I., Acar, C.: ‘A review on clean energy solutions for better sustainability’, Int. J. Energy Res., 2015, 39, (5), pp. 585606.
    20. 20)
      • 14. Cabrane, Z., Ouassaid, M., Maaroufi, M.: ‘Battery and supercapacitor for photovoltaic energy storage: a fuzzy logic management’, IET Renew. Power Gener., 2017, 11, (8), pp. 11571165.
    21. 21)
      • 28. Renewables 2012 Global Status Report: ‘Renewable Energy Policy Network for the 21st Century’, 2012.
    22. 22)
      • 20. Liu, F., Giulietti, M., Chen, B.: ‘Joint optimisation of generation and storage in the presence of wind’, IET Renew. Power Gener., 2016, 10, (10), pp. 14771487.
    23. 23)
      • 26. Koraki, D., Strunz, K.: ‘Wind and solar power integration in electricity markets and distribution networks through service-centric virtual power plants’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 473485.
    24. 24)
      • 5. Dunbar, A., Wallace, A.R., Harrison, G.P.: ‘Energy storage and wind power: sensitivity of revenue to future market uncertainties’, IET Renew. Power Gener., 2016, 10, (10), pp. 15351542.
    25. 25)
      • 12. Dragičević, T., Lu, X., Vasquez, J.C., et al: ‘DC microgrids – part II: a review of power architectures, applications, and standardization issues’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 35283549.
    26. 26)
      • 19. Savkin, A.V, Khalid, M., Agelidis, V.G.: ‘A constrained monotonic charging/discharging strategy for optimal capacity of battery energy storage supporting wind farms’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 12241231.
    27. 27)
      • 9. Khalid, M., Savkin, A.V: ‘A method for short-term wind power prediction with multiple observation points’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 579586.
    28. 28)
      • 29. Smith, K.A., Rahn, C.D., Wang, C.-Y.: ‘Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries’, IEEE Trans. Control Syst. Technol., 2010, 18, (3), pp. 654663.
    29. 29)
      • 32. Parker, C.D.: ‘Lead–acid battery energy-storage systems for electricity supply networks’, J. Power Sources, 2001, 100, (1–2), pp. 1828.
    30. 30)
      • 16. Ma, T., Yang, H., Lu, L.: ‘Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems’, Appl. Energy, 2015, 153, pp. 5662.
    31. 31)
      • 1. Green, C.: ‘A ‘fair and ambitious’ climate agreement is not nearly enough: Paris 2015 take heed!’, Environ. Res. Lett., 2015, 10, (10), p. 101003.
    32. 32)
      • 11. Zhao, H., Wu, Q., Hu, S., et al: ‘Review of energy storage system for wind power integration support’, Appl. Energy, 2015, 137, pp. 545553.
    33. 33)
      • 24. Monforti, F., Huld, T., Bódis, K., et al: ‘Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach’, Renew. Energy, 2014, 63, pp. 576586.
    34. 34)
      • 30. ‘Windustry’. Available at http://www.windustry.org/resources/how-much-do-wind-turbines-cost, accessed 26 July 2017.
    35. 35)
      • 31. ‘Solar Choice’. Available at http://www.solarchoice.net.au/blog/10kw-solar-power-systems-price-power-output-and-returns/, accessed 26 July 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5216
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5216
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading