Variable learning adaptive gradient based control algorithm for voltage source converter in distributed generation

Variable learning adaptive gradient based control algorithm for voltage source converter in distributed generation

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents an adaptive control algorithm known as variable learning and adaptive gradient based least mean square for improving the power quality features in standalone distributed generation. Further, frequency and voltage are regulated to set reference value at the terminal of the self-excited single-phase induction generator running in isolated mode. The variable learning and gradient-based least mean square (VLGLMS) algorithm is insensitive to its gradient, step size and sensors noise unlike least mean square algorithm whose convergence performance is influenced by the step-size parameter. In this study, VLGLMS is utilised to compute the active and reactive weights of fundamental load current for estimation of the reference source current. The sinusoidal reference current estimation is followed by generation of gate pulses for operating the DSTATCOM for improving the power quality features of single-phase induction generator based distributed power generation system. A prototype model is developed using MATLAB SIMULINK and tested in the laboratory under linear and non-linear loads. Based on implementation, the performance of control algorithm is validated and obtained results are found satisfactory.

Related content

This is a required field
Please enter a valid email address