http://iet.metastore.ingenta.com
1887

Expeditious frequency control of solar photovoltaic/biogas/biodiesel generator based isolated renewable microgrid using grasshopper optimisation algorithm

Expeditious frequency control of solar photovoltaic/biogas/biodiesel generator based isolated renewable microgrid using grasshopper optimisation algorithm

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This work endeavours to propose an approximate mathematical model of a community based renewable microgrid with solar photovoltaic, biogas and biodiesel generators including battery storage for load frequency studies. It becomes a great challenge to coordinate between generation and load demand of the microgrid as the renewable sources are highly unpredictable and nature dependent. To overcome this issue, the responses of the system are studied under different real-world scenarios of renewable source availabilities and load variations with a maiden approach towards optimising the controller gains using a recent grasshopper optimisation algorithm (GOA) for efficient frequency control. The frequency responses of proposed microgrid are compared with different conventional controllers and some popular optimisation algorithms using MATLAB/Simulink. Finally, proportional–integral–derivative controller with GOA is preferred for the case studies under four cases of source variations with step load perturbation and one case of simultaneous source and load variations. The results of all these five scenarios are found satisfactory in terms of frequency responses and reported in the work.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5196
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5196
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address