access icon free Distributed generation and energy storage system planning for a distribution system operator

The smart distribution system architecture provides value-based control techniques that facilitate bi-directional power flows and energy transactions. Although consensus and understanding continue to develop around peer-to-peer transactions, a distribution system operator aims to promote and enable interoperability among entities, particularly those who own distributed energy resources such as energy storage system (ESS) and distributed generation (DG). In this study, the authors address the optimal allocation of ESS and DG in the smart distribution system architecture, in order to help the integration of wind energy. The formulated objective is to minimise the sum of the annualised investment cost, the expected profit and the imbalance cost in the two-stage of power scheduling. The proposed model is verified on the modified IEEE 15-bus distribution radial system. The simulation results have verified the proposed planning approach. Also, results show that a more risk-seeking operation strategy is recommended if wind power penetration increases.

Inspec keywords: power generation control; minimisation; open systems; power generation economics; power generation planning; wind power; power distribution planning; power distribution control; power generation scheduling; power distribution economics; energy storage; distributed power generation

Other keywords: imbalance cost; bidirectional power flows; wind power penetration; annualised investment cost; distributed generation planning; smart distribution system architecture; energy transactions; distribution system operator; energy storage system planning; peer-to-peer transactions; distributed energy resources; risk-seeking operation strategy; modified IEEE 15-bus distribution radial system; wind energy integration; power scheduling; value-based control techniques; interoperability; optimal DG allocation; optimal ESS allocation

Subjects: Distributed systems software; Distributed power generation; Control engineering computing; Distribution networks; Optimisation techniques; Power system control; Power system planning and layout; Energy resources; Control of electric power systems; Power system management, operation and economics; Optimisation techniques; Power engineering computing

References

    1. 1)
      • 21. Sedghi, M., Ahmadian, A., Aliakbar-Golkar, M.: ‘Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 304316.
    2. 2)
      • 40. Zheng, Y., Dong, Z.Y., Xu, Y., et al: ‘Electric vehicle battery charing/swap stations in distribution systems: comparison study and optimal planning’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 221229.
    3. 3)
      • 39. Mashhour, E., Moghaddas-Tafreshi, S.M.: ‘Bidding strategy of virtual power plant for participating in energy and spinning reserve markets-part II: numerical analysis’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 957964.
    4. 4)
      • 31. Dabbagh, S.R., Sheihk-EI-Eslami, M.K.: ‘Risk assessment of virtual power plants offering in energy and reserve markets’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 35723582.
    5. 5)
      • 36. Zhao, J.H., Wen, F.S., Dong, Z.Y., et al: ‘Optimal dispatch of electric vehicles and wind power using enhanced particle swarm optimization’, IEEE Trans. Ind. Inf., 2012, 8, (4), pp. 889899.
    6. 6)
      • 16. Tushar, M.H.K., Assi, C., Maier, M.: ‘Distributed real-time electricity allocation mechanism for large residential microgrid’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 13531363.
    7. 7)
      • 18. Awad, A.S.A., EL-Fouly, T.H.M., Salama, M.M.A.: ‘Optimal ESS allocation for load management application’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 327336.
    8. 8)
      • 29. Qiu, J., Dong, Z.Y., Zhao, J., et al: ‘A risk-based approach to multi-stage probabilistic transmission network planning’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 48674876.
    9. 9)
      • 2. Qiu, J., Dong, Z.Y., Zhao, J.H., et al: ‘Expansion co-planning for shale gas integration in a combined energy market’, J. Mod. Power Syst. Clean Energy, 2015, 3, (3), pp. 302311.
    10. 10)
      • 8. GridWise Architecture Council. Available at www.gridwiseac.org.
    11. 11)
      • 28. Billinton, R., Yi, G., Karki, R.: ‘Application of a joint deterministic-probabilistic criterion to wind integrated bulk power system planning’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 13841392.
    12. 12)
      • 37. Billinton, R., Allan, R.: ‘Reliability evaluation of power systems’ (Plenum Press, New York, 1996, 2nd edn.).
    13. 13)
      • 25. Hao, H., Corbin, C.D., Kalsi, K., et al: ‘Transactive control of commercial buildings for demand response’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 774783.
    14. 14)
      • 19. Nick, M., Cherkaoui, R., Paolone, M.: ‘Optimal allocation of dispersed energy storage systems in active distribution networks for energy balance and grid support’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 23002310.
    15. 15)
      • 13. Wogrin, S., Gayme, D.F.: ‘Optimizing storage siting, sizing, and technology portfolios in transmission-constrained networks’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 33043313.
    16. 16)
      • 3. Abbasi, F., Hosseini, S.M.: ‘Optimal DG allocation and sizing in presence of storage systems considering network configuration effects in distribution systems’, IET Gener. Transm. Distrib., 2016, 10, (3), pp. 617624.
    17. 17)
      • 6. Chen, Y., Hu, M.: ‘Balancing collective and individual interests in transactive energy management of interconnected micro-grid clusters’, Energy, 2016, 109, pp. 10751085.
    18. 18)
      • 26. Siano, P., Mokryani, G.: ‘Assessing wind turbines placement in distribution market environment by using particle swarm optimization’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 38523864.
    19. 19)
      • 34. Luo, F.J., Dong, Z.Y., Meng, K., et al: ‘Short-term operational planning framework for virtual power plants with high renewable penetrations’, IET Ren. Power Gener., 2016, 10, (5), pp. 623633.
    20. 20)
      • 5. Zheng, Y., Dong, Z.Y., Luo, F.J., et al: ‘Optimal allocation of energy storage system for risk mitigation of DISCOs with high renewable penetrations’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 212220.
    21. 21)
      • 15. Zhang, Z., Wang, J., Ding, T., et al: ‘A two-layer model for microgrid real-time dispatch based on energy storage system charing/discharging hiddne costs’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 3342.
    22. 22)
      • 24. Bejestani, A.K., Annaswamy, A., Samad, T.: ‘A hierarchical transactive control architecture for renewables integration in smart grids: analytical modeling and stability’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 20542065.
    23. 23)
      • 9. Chen, S.X., Gooi, H.B., Wang, M.Q.: ‘Sizing of energy storage for microgrids’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 142151.
    24. 24)
      • 4. Qiu, J., Zhao, J.H., Wang, D., et al: ‘Two-stage coordinated operational planning of distributed energy resources considering wind power curtailment penalty cost’, Energies, 2017, 10, (7), pp. 965984.
    25. 25)
      • 22. Khodayar, M.E., Manshadi, S.D., Vafamehr, A.: ‘The short-term operation of microgrids in a transactive energy architecture’, Electr. J., 2016, 29, (10), pp. 4148.
    26. 26)
      • 11. Atwa, Y.M., El-Saadany, E.F.: ‘Optimal allocation of ESS in distribution dystems with a high penetration of wind energy’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 18151822.
    27. 27)
      • 17. Wen, S., Lan, H., Fu, Q., et al: ‘Economic allocation for energy storage system considering wind power distribution’, IEEE Trans. Power Syst., 2015, 30, (2), pp. 644652.
    28. 28)
      • 10. Chen, C., Duan, S.: ‘Optimal allocation of distributed generation and energy storage system in microgrids’, IET Renew. Power Gener., 2014, 8, (6), pp. 581589.
    29. 29)
      • 20. Bahramirad, S., Reder, W., Khodaei, A.: ‘Reliability-constrained optimal sizing of energy storage system in a microgrid’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 20562062.
    30. 30)
      • 23. Siano, P., Sarno, D.: ‘Assessing the benefits of residential demand response in a real time distribution energy market’, Appl. Energy, 2016, 161, pp. 533551.
    31. 31)
      • 12. Awad, A.S.A., EL-Fouly, T.H.M., Salama, M.M.A.: ‘Optimal ESS allocation and load shedding for improving distribution system reliability’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 23392349.
    32. 32)
      • 27. Conejo, A.J., Carrion, M., Morales, J.M.: ‘Decision making under uncertainty in electricity markets’ (Springer, New York, NY, USA, 2010).
    33. 33)
      • 1. Kroposki, B., Sen, P.K., Malmedal, K.: ‘Optimum sizing and placement of distributed and renewable energy sources in electric power distribution systems’, IEEE Trans. Ind. Appl., 2013, 49, (6), pp. 27412752.
    34. 34)
      • 33. Mashhour, E., Moghaddas-Tafreshi, S.M.: ‘Bidding strategy of virtual power plant for participating in energy and spinning reserve markets-part I: problem formulation’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 949956.
    35. 35)
      • 38. Nord Pool Historical Market Data. Available at http://www.nordpoolspot.com/historical-market-data/.
    36. 36)
      • 14. Chen, C., Duan, S., Cai, T., et al: ‘Optimal allocation and economic analysis of energy storage system in microgrids’, IEEE Trans. Power Electron., 2011, 26, (10), pp. 27622773.
    37. 37)
      • 7. Ghatikar, G., Mashayekh, S., Stadler, M., et al: ‘Distributed energy systems integration and demand optimization for autonomous operations and electric grid transactions’, Appl. Energy, 2016, 167, pp. 432448.
    38. 38)
      • 32. Qiu, J., Zhao, J.H., Yang, H., et al: ‘Optimal scheduling for prosumers in coupled transactive power and gas systems’, IEEE Trans. Power Syst., 2018, 22, (2), pp. 19701980.
    39. 39)
      • 35. Eydeland, A., Wolyniec, K.: ‘Energy and Power Risk Management’ (Wiley, Chichester, 2003).
    40. 40)
      • 30. Huang, J., Xue, Y., Dong, Z.Y., et al: ‘An efficient probabilistic assessment method for electricity market risk management’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 14851493.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5115
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5115
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading