http://iet.metastore.ingenta.com
1887

Distributed generation and energy storage system planning for a distribution system operator

Distributed generation and energy storage system planning for a distribution system operator

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The smart distribution system architecture provides value-based control techniques that facilitate bi-directional power flows and energy transactions. Although consensus and understanding continue to develop around peer-to-peer transactions, a distribution system operator aims to promote and enable interoperability among entities, particularly those who own distributed energy resources such as energy storage system (ESS) and distributed generation (DG). In this study, the authors address the optimal allocation of ESS and DG in the smart distribution system architecture, in order to help the integration of wind energy. The formulated objective is to minimise the sum of the annualised investment cost, the expected profit and the imbalance cost in the two-stage of power scheduling. The proposed model is verified on the modified IEEE 15-bus distribution radial system. The simulation results have verified the proposed planning approach. Also, results show that a more risk-seeking operation strategy is recommended if wind power penetration increases.

References

    1. 1)
      • 1. Kroposki, B., Sen, P.K., Malmedal, K.: ‘Optimum sizing and placement of distributed and renewable energy sources in electric power distribution systems’, IEEE Trans. Ind. Appl., 2013, 49, (6), pp. 27412752.
    2. 2)
      • 2. Qiu, J., Dong, Z.Y., Zhao, J.H., et al: ‘Expansion co-planning for shale gas integration in a combined energy market’, J. Mod. Power Syst. Clean Energy, 2015, 3, (3), pp. 302311.
    3. 3)
      • 3. Abbasi, F., Hosseini, S.M.: ‘Optimal DG allocation and sizing in presence of storage systems considering network configuration effects in distribution systems’, IET Gener. Transm. Distrib., 2016, 10, (3), pp. 617624.
    4. 4)
      • 4. Qiu, J., Zhao, J.H., Wang, D., et al: ‘Two-stage coordinated operational planning of distributed energy resources considering wind power curtailment penalty cost’, Energies, 2017, 10, (7), pp. 965984.
    5. 5)
      • 5. Zheng, Y., Dong, Z.Y., Luo, F.J., et al: ‘Optimal allocation of energy storage system for risk mitigation of DISCOs with high renewable penetrations’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 212220.
    6. 6)
      • 6. Chen, Y., Hu, M.: ‘Balancing collective and individual interests in transactive energy management of interconnected micro-grid clusters’, Energy, 2016, 109, pp. 10751085.
    7. 7)
      • 7. Ghatikar, G., Mashayekh, S., Stadler, M., et al: ‘Distributed energy systems integration and demand optimization for autonomous operations and electric grid transactions’, Appl. Energy, 2016, 167, pp. 432448.
    8. 8)
      • 8. GridWise Architecture Council. Available at www.gridwiseac.org.
    9. 9)
      • 9. Chen, S.X., Gooi, H.B., Wang, M.Q.: ‘Sizing of energy storage for microgrids’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 142151.
    10. 10)
      • 10. Chen, C., Duan, S.: ‘Optimal allocation of distributed generation and energy storage system in microgrids’, IET Renew. Power Gener., 2014, 8, (6), pp. 581589.
    11. 11)
      • 11. Atwa, Y.M., El-Saadany, E.F.: ‘Optimal allocation of ESS in distribution dystems with a high penetration of wind energy’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 18151822.
    12. 12)
      • 12. Awad, A.S.A., EL-Fouly, T.H.M., Salama, M.M.A.: ‘Optimal ESS allocation and load shedding for improving distribution system reliability’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 23392349.
    13. 13)
      • 13. Wogrin, S., Gayme, D.F.: ‘Optimizing storage siting, sizing, and technology portfolios in transmission-constrained networks’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 33043313.
    14. 14)
      • 14. Chen, C., Duan, S., Cai, T., et al: ‘Optimal allocation and economic analysis of energy storage system in microgrids’, IEEE Trans. Power Electron., 2011, 26, (10), pp. 27622773.
    15. 15)
      • 15. Zhang, Z., Wang, J., Ding, T., et al: ‘A two-layer model for microgrid real-time dispatch based on energy storage system charing/discharging hiddne costs’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 3342.
    16. 16)
      • 16. Tushar, M.H.K., Assi, C., Maier, M.: ‘Distributed real-time electricity allocation mechanism for large residential microgrid’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 13531363.
    17. 17)
      • 17. Wen, S., Lan, H., Fu, Q., et al: ‘Economic allocation for energy storage system considering wind power distribution’, IEEE Trans. Power Syst., 2015, 30, (2), pp. 644652.
    18. 18)
      • 18. Awad, A.S.A., EL-Fouly, T.H.M., Salama, M.M.A.: ‘Optimal ESS allocation for load management application’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 327336.
    19. 19)
      • 19. Nick, M., Cherkaoui, R., Paolone, M.: ‘Optimal allocation of dispersed energy storage systems in active distribution networks for energy balance and grid support’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 23002310.
    20. 20)
      • 20. Bahramirad, S., Reder, W., Khodaei, A.: ‘Reliability-constrained optimal sizing of energy storage system in a microgrid’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 20562062.
    21. 21)
      • 21. Sedghi, M., Ahmadian, A., Aliakbar-Golkar, M.: ‘Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 304316.
    22. 22)
      • 22. Khodayar, M.E., Manshadi, S.D., Vafamehr, A.: ‘The short-term operation of microgrids in a transactive energy architecture’, Electr. J., 2016, 29, (10), pp. 4148.
    23. 23)
      • 23. Siano, P., Sarno, D.: ‘Assessing the benefits of residential demand response in a real time distribution energy market’, Appl. Energy, 2016, 161, pp. 533551.
    24. 24)
      • 24. Bejestani, A.K., Annaswamy, A., Samad, T.: ‘A hierarchical transactive control architecture for renewables integration in smart grids: analytical modeling and stability’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 20542065.
    25. 25)
      • 25. Hao, H., Corbin, C.D., Kalsi, K., et al: ‘Transactive control of commercial buildings for demand response’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 774783.
    26. 26)
      • 26. Siano, P., Mokryani, G.: ‘Assessing wind turbines placement in distribution market environment by using particle swarm optimization’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 38523864.
    27. 27)
      • 27. Conejo, A.J., Carrion, M., Morales, J.M.: ‘Decision making under uncertainty in electricity markets’ (Springer, New York, NY, USA, 2010).
    28. 28)
      • 28. Billinton, R., Yi, G., Karki, R.: ‘Application of a joint deterministic-probabilistic criterion to wind integrated bulk power system planning’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 13841392.
    29. 29)
      • 29. Qiu, J., Dong, Z.Y., Zhao, J., et al: ‘A risk-based approach to multi-stage probabilistic transmission network planning’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 48674876.
    30. 30)
      • 30. Huang, J., Xue, Y., Dong, Z.Y., et al: ‘An efficient probabilistic assessment method for electricity market risk management’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 14851493.
    31. 31)
      • 31. Dabbagh, S.R., Sheihk-EI-Eslami, M.K.: ‘Risk assessment of virtual power plants offering in energy and reserve markets’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 35723582.
    32. 32)
      • 32. Qiu, J., Zhao, J.H., Yang, H., et al: ‘Optimal scheduling for prosumers in coupled transactive power and gas systems’, IEEE Trans. Power Syst., 2018, 22, (2), pp. 19701980.
    33. 33)
      • 33. Mashhour, E., Moghaddas-Tafreshi, S.M.: ‘Bidding strategy of virtual power plant for participating in energy and spinning reserve markets-part I: problem formulation’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 949956.
    34. 34)
      • 34. Luo, F.J., Dong, Z.Y., Meng, K., et al: ‘Short-term operational planning framework for virtual power plants with high renewable penetrations’, IET Ren. Power Gener., 2016, 10, (5), pp. 623633.
    35. 35)
      • 35. Eydeland, A., Wolyniec, K.: ‘Energy and Power Risk Management’ (Wiley, Chichester, 2003).
    36. 36)
      • 36. Zhao, J.H., Wen, F.S., Dong, Z.Y., et al: ‘Optimal dispatch of electric vehicles and wind power using enhanced particle swarm optimization’, IEEE Trans. Ind. Inf., 2012, 8, (4), pp. 889899.
    37. 37)
      • 37. Billinton, R., Allan, R.: ‘Reliability evaluation of power systems’ (Plenum Press, New York, 1996, 2nd edn.).
    38. 38)
      • 38. Nord Pool Historical Market Data. Available at http://www.nordpoolspot.com/historical-market-data/.
    39. 39)
      • 39. Mashhour, E., Moghaddas-Tafreshi, S.M.: ‘Bidding strategy of virtual power plant for participating in energy and spinning reserve markets-part II: numerical analysis’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 957964.
    40. 40)
      • 40. Zheng, Y., Dong, Z.Y., Xu, Y., et al: ‘Electric vehicle battery charing/swap stations in distribution systems: comparison study and optimal planning’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 221229.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5115
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5115
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address