http://iet.metastore.ingenta.com
1887

Non-deterministic optimal power flow considering the uncertainties of wind power and load demand by multi-objective information gap decision theory and directed search domain method

Non-deterministic optimal power flow considering the uncertainties of wind power and load demand by multi-objective information gap decision theory and directed search domain method

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Optimal power flow (OPF) as an important operation function of wind power-integrated power systems encounters the uncertainties of load demand and wind power. To cope with these uncertainty sources, various OPF models including deterministic OPF, probabilistic OPF, scenario-based OPF, stochastic OPF, robust OPF and recently information gap decision theory (IGDT)-based OPF have been presented in the literature. A multi-objective IGDT-based AC OPF model is presented which can simultaneously optimise various uncertainty horizons pertaining to load demands and wind powers considering the specified robustness level. Another main contribution of this study is presenting an effective directed search domain (DSD)-based multi-objective solution method to solve the proposed multi-objective IGDT-based AC OPF problem. The proposed OPF model and solution approach are tested on the IEEE 118-bus test system and the obtained results are compared with the results of other OPF models and solution methods. These comparisons illustrate the effectiveness of the proposed multi-objective IGDT-based AC OPF model as well as the proposed DSD-based multi-objective solution method.

References

    1. 1)
      • 1. Blaabjerg, F., Ma, K.: ‘Future on power electronics for wind turbine systems’, IEEE J. Emerg. Sel. Topics Power Electron., 2013, 1, (3), pp. 139152.
    2. 2)
      • 2. Wu, Y.K., Hong, J.S.: ‘A literature review of wind forecasting technology in the world’. IEEE Power Tech, Lausanne, 1–5 July 2007, pp. 504509.
    3. 3)
      • 3. Makhloufi, S., Mekhaldi, A., Teguar, M.: ‘Three powerful nature-inspired algorithms to optimize power flow in Algeria's adrar power system’, Energy, 2016, 116, (1), pp. 11171130.
    4. 4)
      • 4. Li, X., Cao, J., Du, D.: ‘Probabilistic optimal power flow for power systems considering wind uncertainty and load correlation’, Neurocomputing, 2015, 148, pp. 240247.
    5. 5)
      • 5. Rahmani, S., Amjady, N.: ‘A new optimal power flow approach for wind energy integrated power systems’, Energy, 2017, 134, pp. 349359.
    6. 6)
      • 6. Sharifzadeh, H., Amjady, N., Zareipour, H.: ‘Multi-period stochastic security-constrained OPF considering the uncertainty sources of wind power, load demand and equipment unavailability’, Electr. Power Syst. Res., 2017, 146, pp. 3342.
    7. 7)
      • 7. Alqurashi, A., Etemadi, A.H., Khodaei, A.: ‘Model predictive control to two-stage stochastic dynamic economic dispatch problem’, Control Eng. Pract., 2017, 69, pp. 112121.
    8. 8)
      • 8. Wei, W., Liu, F., Wang, J., et al: ‘Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants’, Appl. Energy, 2016, 183, pp. 674684.
    9. 9)
      • 9. Attarha, A., Amjady, N., Conejo, A. J.: ‘Adaptive robust AC optimal power flow considering load and wind power uncertainties’, Int. J. Electr. Power Energy Syst., 2018, 96, pp. 132142.
    10. 10)
      • 10. Lorca, A., Sun, X.A.: ‘The adaptive robust multi-period alternating current optimal power flow problem’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 19932003.
    11. 11)
      • 11. Rabiee, A., Soroudi, A., Keane, A.: ‘Information gap decision theory based OPF with HVDC connected wind farms’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 33963406.
    12. 12)
      • 12. Murphy, C., Soroudi, A., Keane, A.: ‘Information gap decision theory-based congestion and voltage management in the presence of uncertain wind power’, IEEE Trans. Sustain. Energy, 2016, 7, (2), pp. 841849.
    13. 13)
      • 13. Connell, A.O., Soroudi, A., Keane, A.: ‘Distribution network operation under uncertainty using information gap decision theory’, IEEE Trans. Smart Grid, 2018, 9, (3), pp. 18481858.
    14. 14)
      • 14. Dehghan, S., Kazemi, A., Amjady, N.: ‘Multi-objective robust transmission expansion planning using information-gap decision theory and augmented ε-constraint method’, IET Gener. Transm. Distrib., 2014, 8, (5), pp. 828840.
    15. 15)
      • 15. Ahmadigorji, M., Amjady, N., Dehghan, S.: ‘A robust model for multiyear distribution network reinforcement planning based on information-gap decision theory’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 13391351.
    16. 16)
      • 16. Warid, W., Hizam, H., Mariun, N., et al: ‘A novel quasi oppositional modified jaya algorithm for multi-objective optimal power flow solution’, Appl. Soft Comput., 2018, 65, pp. 360373.
    17. 17)
      • 17. Chen, G., Yi, X., Zhang, Z., et al: ‘Applications of multi-objective dimension-based firefly algorithm to optimize the power losses, emission, and cost in power systems’, Appl. Soft Comput., 2018, 68, pp. 322342.
    18. 18)
      • 18. Zhang, J., Tang, Q., Li, P., et al: ‘A modified MOEA/D approach to the solution of multi-objective optimal power flow problem’, Appl. Soft Comput., 2016, 47, pp. 494514.
    19. 19)
      • 19. Amjady, N., Sharifzadeh, H.: ‘Security constrained optimal power flow considering detailed generator model by a new robust differential evolution algorithm’, Electr. Power Syst. Res., 2011, 81, (2), pp. 740749.
    20. 20)
      • 20. Hosseini, S.A., Amjady, N., Shafie-khah, M., et al: ‘A new multi-objective solution approach to solve transmission congestion management problem of energy markets’, Appl. Energy, 2016, 165, pp. 462471.
    21. 21)
      • 21. Esmaili, M., Amjady, N., Shayanfar, H.A.: ‘Multi-objective congestion management by modified augmented ɛ-constraint method’, Appl. Energy, 2011, 38, (3), pp. 755766.
    22. 22)
      • 22. Erfani, T., Utyuzhnikov, S.V.: ‘Directed search domain: a method for even generation of the Pareto frontier in multiobjective optimization’, Eng. Optim., 2010, 43, (5), pp. 467484.
    23. 23)
      • 23. Bradley, S.P., Hax, A.C., Magnanti, T.L.: ‘Applied mathematical programming’ (Addison-Wesley, Massachusetts, USA, 1977).
    24. 24)
      • 24. Ben-Haim, Y.: ‘Information-gap decision theory: decisions under severe uncertainty’ (Academic Press Series on Decision and Risk, Academic Press, Oxford, UK, 2001).
    25. 25)
      • 25. Mohammadi-Ivatloo, B., Zareipour, H., Amjady, N., et al: ‘Application of information-gap decision theory to risk-constrained self-scheduling of GenCos’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 10931102.
    26. 26)
      • 26. Utyuzhnikov, S.V., Fantini, P., Guenov, M.D.: ‘A method for generating a well-distributed pareto set in nonlinear multiobjective optimization’, J. Comput. Appl. Math., 2009, 223, (2), pp. 820841.
    27. 27)
      • 27. Messac, A., Ismail-Yahaya, A., Mattson, C.A.: ‘The normalized normal constraint method for generating the Pareto frontier’, Struct. Multidiscip. Optim., 2003, 25, (2), pp. 8698.
    28. 28)
      • 28. Leite Da Suva, A.M., Da Fonscca Manso, L., De Oliveira Mello, J.C., et al: ‘Pseudo-chronological simulation for composite reliability analysis with time varying loads’, IEEE Trans. Power Syst., 2000, 15, (1), pp. 7380.
    29. 29)
      • 29. Shaheen, A.M., Farrag, S.M., El-Sehiemy, R.A.: ‘MOPF solution methodology’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 570581.
    30. 30)
      • 30. Conejo, A.J., Carrión, M., Morales, J.M.: ‘Decision making under uncertainty in electricity markets’ (Springer, New York, USA, 2010).
    31. 31)
      • 31. General Algebraic Modeling System (GAMS)’. Available at http://www.gams.com/.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5021
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5021
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address