Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Hybrid global maximum power point tracking approach for photovoltaic power optimisers

A new hybrid global maximum power point (MPP) tracking (MPPT) method is introduced in this study by using an improved 0.8 VOC model-based algorithm containing a smart power scanning procedure which is based on the sign of a change of photovoltaic (PV) module power. By courtesy of this procedure, the global MPP is determined effectively and within a small scanning time interval. The effectiveness of the proposed global MPPT algorithm has been validated by experimental studies. One of the buck-boost converter types, a single-ended primary inductance converter was implemented in this context. Experimental results show that tracking efficiency in the proposed algorithm is very satisfactory since blind scanning is prevented. Furthermore, it is presented in the experimental results that tracking efficiency is bigger in the proposed shading detection approach by up to 11.29% than the other technique which monitors voltage and current variations. In addition, there are no high software and hardware burdens which make this MPPT algorithm applicable especially in the smart alternating current module, module-integrated converters, PV power optimisers, and module level distributed MPPT applications.

References

    1. 1)
      • 3. Noguchi, T., Togashi, S., Nakamoto, R.: ‘Short-current pulse-based maximum-power-point tracking method for multiple photovoltaic-and-converter module system’, IEEE Trans. Ind. Electron., 2002, 49, (1), pp. 217223.
    2. 2)
      • 16. Koutroulis, E., Blaabjerg, F.: ‘A new technique for tracking the global maximum power point of PV arrays operating under partial shading conditions’, IEEE J. Photovolt., 2011, 2, (2), pp. 184190.
    3. 3)
      • 28. Manickam, C., Raman, G.R., Raman, G.P., et al: ‘A hybrid algorithm for tracking of GMPP based on P&O and PSO with reduced power oscillation in string inverters’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 60976106.
    4. 4)
      • 17. Wang, Y., Ruan, X: ‘High accuracy and fast speed MPPT methods for PV string under partially shaded conditions’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 235245.
    5. 5)
      • 9. Ishaque, K., Salam, Z.: ‘A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 31953206.
    6. 6)
      • 7. Safari, A., Mekhilef, S.: ‘Simulation and hardware implementation of incremental conductance MPPT with direct control method using Cúk converter’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 11541161.
    7. 7)
      • 12. Liu, Y., Chen, J., Huang, J.: ‘Global maximum power point tracking algorithm for PV systems operating under partially shaded conditions using the segmentation search method’, Sol. Energy, 2014, 103, pp. 350363.
    8. 8)
      • 25. Helios Solar Works, 9T6 Series Solar Module.
    9. 9)
      • 22. Debnath, D., De, P., Chatterjee, K.: ‘Simple scheme to extract maximum power from series connected photovoltaic modules experiencing mismatched operating conditions’, IET Power Electron., 2016, 9, (3), pp. 408416.
    10. 10)
      • 15. Ahmed, J., Salam, Z.: ‘An improved method to predict the position of maximum power point during partial shading for PV arrays’, IEEE Trans. Ind. Inform., 2015, 11, (6), pp. 13781387.
    11. 11)
      • 1. Esram, T., Chapman, P.L.: ‘Comparison of photovoltaic array maximum power point tracking techniques’, IEEE Trans. Energy Convers., 2007, 22, (2), pp. 439449.
    12. 12)
      • 26. Sanyo HIT Photovoltaic Modules, HIP-180BA3.
    13. 13)
      • 23. Wang, F., Zhu, T., Zhuo, G., et al: ‘Analysis and optimization of flexible MCPT, strategy in submodule PV application’, IEEE Trans. Sust. Energy, 2017, 8, (1), pp. 249257.
    14. 14)
      • 27. STMicroelectronics, Application Note AN3432: ‘How to choose a bypass diode for a silicon panel junction box’.
    15. 15)
      • 29. Başoğlu, M.E., Çakır, B.: ‘A novel voltage-current characteristic based global maximum power point tracking algorithm in photovoltaic systems’, Energy, 2016, 112, pp. 153163.
    16. 16)
      • 5. Fernia, N., Petrone, G., Spagnuolo, G., et al: ‘Optimization of perturb and observe maximum power point tracking method’, IEEE Trans. Power Electron., 2005, 20, (4), pp. 963973.
    17. 17)
      • 30. Başoğlu, M.E., Çakır, B.: ‘Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach’, Renewable Sustain. Energy Rev., 2016, 60, pp. 11001113.
    18. 18)
      • 18. Xiao, W., El Moursi, M.S., Khan, O., et al: ‘Review of grid-tied converter topologies used in photovoltaic systems’, IET Renew. Power Gener., 2016, 10, (10), pp. 15431551.
    19. 19)
      • 4. Killi, M., Samanha, S.: ‘Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 55495559.
    20. 20)
      • 10. Ramyar, A., Iman-Eini, H., Farhangi, S.: ‘Global maximum power point tracking method for photovoltaic arrays under partial shading conditions’, IEEE Trans. Ind. Electron., 2017, 64, (4), pp. 28552864.
    21. 21)
      • 20. Pragallapati, N., Agarwal, V.: ‘Distributed PV power extraction based on a modified interleaved SEPIC for uniform irradiation conditions’, IEEE J. Photovolt., 2015, 5, (5), pp. 14421453.
    22. 22)
      • 19. Pilawa-Podgurski, R.C.N., Perreault, D.J.: ‘Submodule integrated distributed maximum power point tracking for solar photovoltaic applications’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 29572967.
    23. 23)
      • 2. Liu, F., Duan, S., Liu, F., et al: ‘A variable step size INC MPPT method for PV systems’, IEEE Trans. Ind. Electron., 2008, 55, (7), pp. 26222628.
    24. 24)
      • 6. Mei, Q., Shan, M., Liu, L., et al: ‘A novel improved variable step size incremental resistance MPPT method for PV systems’, IEEE Trans. Ind. Electron., 2008, 58, (6), pp. 24272434.
    25. 25)
      • 21. Qin, S., Barth, C.B., Pilawa-Podgurski, R.C.N.: ‘Enhancing microinverter energy capture with submodule differential power processing’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 35753585.
    26. 26)
      • 13. Zhu, Q., Zhang, X., Li, S., et al: ‘Research and test of power-loop-based dynamic multi-peak MPPT algorithm’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 73497359.
    27. 27)
      • 14. Tey, K.S., Mekhilef, S.: ‘Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 53845391.
    28. 28)
      • 11. Chen, K., Tian, S., Cheng, Y., et al: ‘An improved MPPT controller for photovoltaic system under partial shading condition’, IEEE Trans. Sustain. Energy, 2014, 5, (3), pp. 978985.
    29. 29)
      • 8. Patel, H., Agarwal, V.: ‘Maximum power point tracking scheme for PV systems operating under partially shaded conditions’, IEEE Trans. Ind. Electron., 2008, 55, (4), pp. 16891698.
    30. 30)
      • 24. Jeon, Y., Lee, H., Kim, K.A., et al: ‘Least power point tracking method for photovoltaic differential power processing systems’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 19411951.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.0029
Loading

Related content

content/journals/10.1049/iet-rpg.2018.0029
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address