http://iet.metastore.ingenta.com
1887

Hierarchical control scheme for coordinated reactive power regulation in clustered wind farms

Hierarchical control scheme for coordinated reactive power regulation in clustered wind farms

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Coordinated reactive power regulation is always a critical issue when it comes to a system with a high penetration level of wind energy. This study provides a distributed control scheme for wind farm reactive power regulation, aiming to coordinate the reactive power reference among wind farm clusters. Within the limited communication among neighbouring clusters, fair reactive power generation sharing is achieved. Moreover, the reactive power capability of the wind turbine (WT) is utilised to cooperate with reactive power compensation devices. The characteristics of the collector system are analysed to improve the voltage profile. Instead of averagely assigning the generation order to each WT, the reference is assigned based on voltage sensitivity. Case studies are carried out to validate the performance of the proposed control scheme.

References

    1. 1)
      • 1. Dong, Z.Y., Wong, K.P., Meng, K., et al: ‘Wind power impact on system operations and planning’. Proc. IEEE Power Energy Society General Meeting, Minneapolis, USA, 2010.
    2. 2)
      • 2. Niu, T., Guo, Q., Jin, H., et al: ‘Dynamic reactive power optimal allocation to decrease wind power curtailment in a large-scale wind power integration area’, IET Renew. Power Gener., 2017, 11, (13), pp. 16671678.
    3. 3)
      • 3. Australian Energy Market Operator: ‘Black system event in South Australia on 28 September 2016’ (AEMO, 2016), Available: https://www.aemo.com.au/-/media/Files/Electricity/NEM/Market_Notices_and_Events/Power_System_Incident_Reports/2017/Integrated-Final-Report-SA-Black-System-28-September-2016.pdf.
    4. 4)
      • 4. Zhao, H., Wu, Q., Guo, Q., et al: ‘Optimal active power control of a wind farm equipped with energy storage system based on distributed model predictive control’, IET Gener. Transm. Distrib., 2016, 10, (3), pp. 669677.
    5. 5)
      • 5. Li, Y., Xu, Z., Meng, K.: ‘Optimal power sharing control of wind turbines’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 824825.
    6. 6)
      • 6. Yang, F., Li, Z.: ‘Improve distribution system energy efficiency with coordinated reactive power control’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 25182525.
    7. 7)
      • 7. Anilkumar, R., Devriese, G., Srivastava, A.K.: ‘Voltage and reactive power control to maximize the energy savings in power distribution system with wind energy’, IEEE Trans. Ind. Appl., 2017, 54, (1), pp. 656664.
    8. 8)
      • 8. Zhao, H., Wu, Q., Wang, J., et al: ‘Combined active and reactive power control of wind farms based on model predictive control’, IEEE Trans. Energy Convers., 2017, 32, (3), pp. 11771187.
    9. 9)
      • 9. Zhao, H., Wu, Q., Guo, Q., et al: ‘Coordinated voltage control of a wind farm based on model predictive control’, IEEE Trans. Sustain. Energy, 2016, 7, (4), pp. 14401451.
    10. 10)
      • 10. Moger, T., Dhadbanjan, T.: ‘Fuzzy logic approach for reactive power coordination in grid-connected wind farms to improve steady state voltage stability’, IET Renew. Power Gener., 2017, 11, (2), pp. 351361.
    11. 11)
      • 11. Zhang, B., Hou, P., Hu, W., et al: ‘A reactive power dispatch strategy with loss minimization for a DFIG-based wind farm’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 914923.
    12. 12)
      • 12. Jung, S., Jang, G.: ‘A loss minimization method on a reactive power supply process for wind farm’, IEEE Trans. Power Syst., 2017, 32, (4), pp. 30603068.
    13. 13)
      • 13. Nasri, A., Conejo, A.J., Kazempour, S.J., et al: ‘Minimizing wind power spillage using an OPF with FACTS devices’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 21502159.
    14. 14)
      • 14. Zhang, C., Chen, H., Ngan, H.: ‘Reactive power optimisation considering wind farms based on an optimal scenario method’, IET Gener. Transm. Distrib., 2016, 10, (15), pp. 37363744.
    15. 15)
      • 15. Rezaei, F., Esmaeili, S.: ‘Decentralized reactive power control of distributed PV and wind power generation units using an optimized fuzzy-based method’, Int. J. Electr. Power Energy Syst., 2017, 87, pp. 2742.
    16. 16)
      • 16. Cao, Q., Song, Y.-D., Guerrero, J.M., et al: ‘Coordinated control for flywheel energy storage matrix systems for wind farm based on charging/discharging ratio consensus algorithms’, IEEE Trans. Smart Grid, 2016, 7, (3), pp. 12591267.
    17. 17)
      • 17. Li, J., Xin, H., Wei, W., et al: ‘Decentralised conic optimisation of reactive power considering uncertainty of renewable energy sources’, IET Renew. Power Gener., 2016, 10, (9), pp. 13481355.
    18. 18)
      • 18. Hossain, M.J., Pota, H.R., Ramos, R.A.: ‘Improved low-voltage-ride-through capability of fixed-speed wind turbines using decentralised control of STATCOM with energy storage system’, IET Gener. Transm. Distrib., 2012, 6, (8), p. 719.
    19. 19)
      • 19. Bolognani, S., Zampieri, S.: ‘A distributed control strategy for reactive power compensation in smart microgrids’, IEEE Trans. Autom. Control, 2013, 58, (11), pp. 28182833.
    20. 20)
      • 20. Zhang, H., Kim, S., Sun, Q., et al: ‘Distributed adaptive virtual impedance control for accurate reactive power sharing based on consensus control in microgrids’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 17491761.
    21. 21)
      • 21. Schiffer, J., Seel, T., Raisch, J., et al: ‘Voltage stability and reactive power sharing in inverter-based microgrids with consensus-based distributed voltage control’, IEEE Trans. Control Syst. Technol., 2016, 24, (1), pp. 96109.
    22. 22)
      • 22. Xin, H., Qu, Z., Lu, Z., et al: ‘Cooperative control strategy for multiple photovoltaic generators in distribution networks’, IET Control Theory Appl., 2011, 5, (14), pp. 16171629.
    23. 23)
      • 23. Wang, D., Meng, K., Luo, F., et al: ‘Coordinated dispatch of networked energy storage systems for loading management in active distribution networks’, IET Renew. Power Gener., 2016, 10, (9), pp. 13741381.
    24. 24)
      • 24. Meng, K., Dong, Z., Xu, Z., et al: ‘Coordinated dispatch of virtual energy storage systems in smart distribution networks for loading management’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 3203, (c), pp. 111.
    25. 25)
      • 25. Gao, X., Meng, K., Dong, Z.Y., et al: ‘Cooperation-driven distributed control scheme for large-scale wind farm active power regulation’, IEEE Trans. Energy Convers., 2017, 32, (3), p. 1.
    26. 26)
      • 26. Olfati-Saber, R., Fax, J.A., Murray, R.M.: ‘Consensus and cooperation in networked multi-agent systems’, Proc. IEEE, 2007, 95, (1), pp. 215233.
    27. 27)
      • 27. Xiao, L., Boyd, S.: ‘Fast linear iterations for distributed averaging’, Syst. Control Lett., 2004, 53, (1), pp. 6578.
    28. 28)
      • 28. Brochu, J., Larose, C., Gagnon, R.: ‘Generic equivalent collector system parameters for large wind power plants’, IEEE Trans. Energy Convers., 2011, 26, (2), pp. 542549.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0835
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0835
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address