http://iet.metastore.ingenta.com
1887

access icon openaccess Introducing low-order system frequency response modelling of a future power system with high penetration of wind power plants with frequency support capabilities

  • HTML
    181.833984375Kb
  • XML
    171.2880859375Kb
  • PDF
    1.9601202011108398MB
Loading full text...

Full text loading...

/deliver/fulltext/iet-rpg/12/13/IET-RPG.2017.0811.html;jsessionid=t5nspbsiaixl.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-rpg.2017.0811&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. International Renewable Energy Agency: ‘Renewable energy capacity statistics 2017’, 2017. Available at http://www.irena.org, accessed 12 November 2017.
    2. 2)
      • 2. Tielens, P., Van Hertem, D.: ‘The relevance of inertia in power systems’, Renew. Sust. Energy Rev., 2016, 55, pp. 9991009.
    3. 3)
      • 3. Ulbig, A., Borsche, T.S., Andersson, G.: ‘Analyzing rotational inertia, grid topology and their role for power system stability’, IFAC-PapersOnLine, 2015, 48, (30), pp. 541547. 9th IFAC Symposium on Control of Power and Energy Systems CPES 2015.
    4. 4)
      • 4. Tsili, M., Papathanassiou, S.: ‘A review of grid code technical requirements for wind farms’, IET Renew. Power Gener., 2009, 3, (3), pp. 308332.
    5. 5)
      • 5. Tielens, P., Hertem, D.V.: ‘Grid inertia and frequency control in power systems with high penetration of renewables’. Proc. 6th Young Researchers Symp. Electrical Power Engineering, Delft, the Netherlands, 2012, pp. 16.
    6. 6)
      • 6. Brisebois, J., Aubut, N.: ‘Wind farm inertia emulation to fulfill hydro-quebec's specific need’. Proc. 2011 IEEE Power and Energy Society General Meeting, Detroit, Michigan, USA, 2011, pp. 17.
    7. 7)
      • 7. Engelken, S., Mendonca, A., Fischer, M.: ‘Inertial response with improved variable recovery behaviour provided by type 4 WTs’, IET Renew. Power Gener., 2017, 11, pp. 195201.
    8. 8)
      • 8. Wu, Z., Gao, W., Gao, T., et al: ‘State-of-the-art review on frequency response of wind power plants in power systems’, J. Modern Power Syst. Clean Energy, 2018, 6, (8), pp. 116.
    9. 9)
      • 9. Anderson, P.M., Mirheydar, M.: ‘A low-order system frequency response model’, IEEE Trans. Power Syst., 1990, 5, (3), pp. 720729.
    10. 10)
      • 10. Hu, J., Sun, L., Yuan, X., et al: ‘Modeling of type 3 wind turbines with df/dt inertia control for system frequency response study’, IEEE Trans. Power Syst., 2017, 32, (4), pp. 27992809.
    11. 11)
      • 11. Ghosh, S., Kamalasadan, S., Senroy, N., et al: ‘Doubly fed induction generator (DFIG)-based wind farm control framework for primary frequency and inertial response application’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 18611871.
    12. 12)
      • 12. Ghosh, S., Senroy, N., Kamalasadan, S.: ‘Reduced order modeling of wind farms for inclusion in large power system simulations for primary frequency response application’. Proc. 2014 North American Power Symp. (NAPS), Pullman, Washington, USA, 2014, pp. 16.
    13. 13)
      • 13. Li, S., Zhu, G., Huang, J., et al: ‘Analytical model of composite inertia control for wind turbine generators participating in frequency regulation’, J. Eng., 2017, (13), pp. 11641169.
    14. 14)
      • 14. Toulabi, M., Bahrami, S., Ranjbar, A.: ‘An input-to-state stability approach to inertial frequency response analysis of doubly fed induction generator based wind turbines’, IEEE Trans. Energy Convers., 2017, 32, (4), pp. 14181431.
    15. 15)
      • 15. Vidyanandan, K.V., Senroy, N.: ‘Simplified dynamic models of variable speed wind turbines for frequency regulation studies’. Proc. 2013 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Bangalore, India, 2013, pp. 16.
    16. 16)
      • 16. Krpan, M., Kuzle, I.: ‘Linearized model of variable speed wind turbines for studying power system frequency changes’. Proc. IEEE EUROCON 2017, Ohrid, Macedonia, 2017, pp. 393398.
    17. 17)
      • 17. Krpan, M., Kuzle, I.: ‘Inertial and primary frequency response model of variable-speed wind turbines’, J. Eng., 2017, (13), pp. 844848.
    18. 18)
      • 18. Quan, R., Pan, W.: ‘A low-order system frequency response model for DFIG distributed wind power generation systems based on small signal analysis’, Energies, 2017, 10, (5), pp. 657672.
    19. 19)
      • 19. Ma, J., Qiu, Y., Li, Y., et al: ‘Research on the impact of DFIG virtual inertia control on power system small-signal stability considering the phase-locked loop’, IEEE Trans. Power Syst., 2017, 32, (3), pp. 20942105.
    20. 20)
      • 20. Ma, J., Qiu, Y., Li, Y., et al: ‘Model order reduction analysis of DFIG integration on the power system small-signal stability considering the virtual inertia control’, IET Gener. Transm. Distrib., 2017, 11, (16), pp. 40874095.
    21. 21)
      • 21. Arani, M.F.M., Mohamed, Y.A.R.I.: ‘Analysis and impacts of implementing droop control in DFIG-based wind turbines on microgrid/weak-grid stability’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 385396.
    22. 22)
      • 22. Ackermann, T.: ‘Wind power in power systems’ (Wiley, Chichester, 2012, 2nd edn.).
    23. 23)
      • 23. Slootweg, J.G., Polinder, H., Kling, W.L.: ‘Dynamic modelling of a wind turbine with doubly fed induction generator’. Proc. 2001 Power Engineering Society Summer Meeting, Vancouver, Canada, 2001, pp. 644649.
    24. 24)
      • 24. Slootweg, J.G., Polinder, H., Kling, W.L.: ‘Dynamic modelling of a wind turbine with direct drive synchronous generator and back to back voltage source converter and its controls’. Proc. European Wind Energy Conf., Copenhagen, Denmark, 2001, pp. 14.
    25. 25)
      • 25. Slootweg, J.G., Polinder, H., Kling, W.L.: ‘Representing wind turbine electrical generating systems in fundamental frequency simulations’, IEEE Trans. Energy Convers., 2003, 18, (4), pp. 516524.
    26. 26)
      • 26. Machowski, J., Bialek, J.W., Bumby, J.R.: ‘Power system dynamics: stability and control’ (John Wiley & Sons, Chichester, 2008, 2nd edn.).
    27. 27)
      • 27. Abad, G., Lopez, J., Rodriguez, M.A., et al: ‘Doubly fed induction machine: modeling and control for wind energy generation’ (John Wiley & Sons, Hoboken, NJ, 2011, 1st edn.).
    28. 28)
      • 28. de Almeida, R.G., Lopes, J.A.P.: ‘Participation of doubly fed induction wind generators in system frequency regulation’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 944950.
    29. 29)
      • 29. Rijcke, S.D., Tielens, P., Rawn, B., et al: ‘Trading energy yield for frequency regulation: optimal control of kinetic energy in wind farms’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 24692478.
    30. 30)
      • 30. Zhang, Z.S., Sun, Y.Z., Lin, J., et al: ‘Coordinated frequency regulation by doubly fed induction generator-based wind power plants’, IET Renew. Power Gener., 2012, 6, pp. 3847.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0811
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0811
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address