Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Frequency support in a micro-grid using virtual synchronous generator based charging station

This study focuses on the role of electric vehicle (EV) charging station (CS) to support the frequency of the islanded micro-grid (MG). Frequency deviation is a common issue in islanded MGs due to the intermittent nature of renewable energy sources (RES). This issue can be minimised by providing the inertia to the system. However, RES have low or no rotational mass and therefore, they are not able to provide the inertia to the system. In this study, the concept of virtual synchronous generator (VSG) mechanism using a CS is proposed to provide the inertia to the system, where a fleet of EVs parked in CS acts as an energy storage system for MG. Simulations have been performed in Matlab Simulink on the data taken from the MG on the island Kythnos in Greece. Case studies have been carried out to verify the frequency support of MG using VSG mechanism. In these case studies, irradiation level of the photovoltaic array and load of the MG system have been changed arbitrarily to induce the power mismatch in the system. Through simulation results, it has been verified that the frequency of the system can be supported by the bidirectional flow of power between the CS and MG using VSG control mechanism.

References

    1. 1)
      • 15. Zhong, Q.C., Weiss, G.: ‘Synchro converters: inverters that mimic synchronous generators’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12591267.
    2. 2)
      • 23. Bhatti, A.R., Salam, Z., Ashique, R.H.: ‘Electric vehicle charging using photovoltaic based microgrid for remote islands’, Energy Procedia, 2016, 103, pp. 213218.
    3. 3)
      • 2. Watson, L.D., Kimball, J.W.: ‘Frequency regulation of a microgrid using solar power’. IEEE Applied Power Electronics Conf. Exposition (APEC), Fort Worth, TX, 2011, pp. 321326.
    4. 4)
      • 13. Torres, M., Lopes, L.A.: ‘Virtual synchronous generator control in autonomous wind-diesel power systems’. IEEE Electrical Power and Energy Conf., Montreal, October 2009, pp. 16.
    5. 5)
      • 21. Shintai, T., Miura, Y., Ise, T.: ‘Oscillation damping of a distributed generator using a virtual synchronous generator’, IEEE Trans. Power Deliv., 2014, 29, (2), pp. 668676.
    6. 6)
      • 31. Polivka, W.M., Chetty, P.R.K., Middlebrook, R.D.: ‘State-space average modelling of converters with parasitics and storage-time modulation’. IEEE Power Electronics Specialists Conf. (PESC), Atlanta, GA, 1980, pp. 119143.
    7. 7)
      • 14. Bevrani, H., Ise, T., Miura, Y.: ‘Virtual synchronous generators: a survey and new perspectives’, Electr. Power Energy Syst., 2014, 54, pp. 244254.
    8. 8)
      • 7. Bunker, K.J., Weaver, W.W.: ‘Microgrid frequency regulation using wind turbine controls’. IEEE Power and Energy Conf. Illinois (PECI), Illinois, 2014, pp. 16.
    9. 9)
      • 12. Alipoor, J., Miura, Y., Ise, T.: ‘Power system stabilization using virtual synchronous generator with alternating moment of inertia’, IEEE J. Emerg. Sel. Top. Power Electron., 2015, 3, (2), pp. 451458.
    10. 10)
      • 26. Rana, R., Singh, M., Mishra, S.: ‘Design of modified droop controller for frequency support in microgrid using fleet of electric vehicles’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 36273636.
    11. 11)
      • 18. Mishra, S., Pullaguram, D., Buragappu, S.A., et al: ‘Single-phase synchronverter for a grid-connected roof top photovoltaic system’, IET Renew. Power Gener., 2016, 10, (8), pp. 11871194.
    12. 12)
      • 3. Bacha, S., Picault, D., Burger, B., et al: ‘Photovoltaics in micro grids: an overview of grid integration and energy management aspects’, IEEE Ind. Electron. Mag., 2015, 9, (1), pp. 3346.
    13. 13)
      • 24. Mortaz, E., Valenzuela, J.: ‘Microgrid energy scheduling using storage from electric vehicles’, Electr. Power Syst. Res., 2017, 143, pp. 554562.
    14. 14)
      • 28. Shimizu, K., Masuta, T., Ota, Y., et al: ‘Load frequency control in power system using vehicle-to-grid system considering the customer convenience of electric vehicles’. Proc. 2010 Int. Conf. Power System Technology (POWERCON), Hangzhou, October 2010, pp. 18.
    15. 15)
      • 25. Gouveia, C., Moreira, C.L., Lopes, J.A.P., et al: ‘Microgrid service restoration: the role of plugged-in electric vehicles’, IEEE Ind. Electron. Mag., 2013, 7, (4), pp. 2641.
    16. 16)
      • 4. Khalil, A., Ateea, K.: ‘Modelling and control of photovoltaic-based microgrid’, Int. J. Renew. Energy Res., IJRER, 2015, 5, (3), pp. 826835.
    17. 17)
      • 6. Ramaiah, V.J., Reddy, M.K.K., Sarkar, V.: ‘Variable rate LPPT based droop controlled operation of photovoltaic system for microgrid frequency regulation’. IEEE Int. Conf. Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, 2016, pp. 15.
    18. 18)
      • 1. Hajimiragha, A.H., Zadeh, M.R.D., Moazeni, S.: ‘Micro-grids frequency control considerations within the framework of the optimal generation scheduling problem’, IEEE Trans. Smart Grid, 2015, 6, pp. 534547.
    19. 19)
      • 9. Li, X., Song, Y.J., Han, S.B.: ‘Frequency control in micro-grid power system combined with electrolyzer system and fuzzy PI controller’, J. Power Sources, 2008, 180, pp. 468475.
    20. 20)
      • 17. Driesen, J., Visscher, K.: ‘Virtual synchronous generators’. Proc. IEEE Power and Energy Society General Meeting Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, 2008, pp. 13.
    21. 21)
      • 30. Arani, M.F., Mohamed, Y.: ‘Cooperative control of wind power generator and electric vehicles for microgrid primary frequency regulation’, IEEE Trans. Smart Grid., 2017, doi: 10.1109/TSG.2017.2693992.
    22. 22)
      • 29. Lopes, J.P., Polenz, S.A., Moreira, C.L., et al: ‘Identification of control and management strategies for LV unbalanced microgrids with plugged-in electric vehicles’, Electr. Power Syst. Res., 2010, 80, (8), pp. 898906.
    23. 23)
      • 27. Yilmaz, M., Krein, P.T.: ‘Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 56735689.
    24. 24)
      • 8. Han, Y., Michael, P., Jain, A., et al: ‘Robust control for micro-grid frequency deviation reduction with attached storage system’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 557565.
    25. 25)
      • 33. Tselepis, S.: ‘12 years operation of the Gaidouromantra Microgrid in Kythnos island COI-3869’. 5th Int. Conf. Integration of RES and DER, Berlin, Germany, December 2012.
    26. 26)
      • 22. Kempton, W., Tomic, J.: ‘Vehicle-to-grid power fundamentals: calculating capacity and net revenue’, J. Power Sources, 2004, 144, (1), pp. 268279.
    27. 27)
      • 32. Cuculic, A., Celic, J., Prenc, R.: ‘Marine diesel-generator model for voltage and frequency variation analysis during fault scenarios’, Pomorski zbornik, 2016, 51, (1), pp. 1124.
    28. 28)
      • 19. Karapanos, V., Haan, S.D., Zwetsloot, K.: ‘Real time simulation of a power system with VSG hardware in the loop’. IECON 2011 – 37th Annual Conf. IEEE Industrial Electronics Society, Melbourne, November 2011, pp. 37483754.
    29. 29)
      • 10. Soni, N., Doodla, S., Chandorkar, M.C.: ‘Improvement of transient response in microgrids using virtual inertia’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 18301839.
    30. 30)
      • 20. Liu, J., Miura, Y., Ise, T.: ‘Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 36003611.
    31. 31)
      • 16. Visscher, K., de Haan, S.: ‘Virtual synchronous machines (VSGs) for frequency stabilisation in future grids with a significant share of decentralized generation’. Proc. IET-CIRED Seminar on Smart Grids for Distribution, Frankfurt, 2008, pp. 14.
    32. 32)
      • 5. Chamana, M., Chowdhury, B.H.: ‘Droop-based control in a photovoltaic-centric microgrid with battery energy storage’. North American Power Symp. (NAPS), Manhattan, KS, 2013, pp. 16.
    33. 33)
      • 11. Morren, J., Haan, S.W.H.D., Kling, W.L., et al: ‘Wind turbines emulating inertia and supporting primary frequency control’, IEEE Trans. Power Syst., 2006, 21, (1), pp. 433434.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0713
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0713
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address