http://iet.metastore.ingenta.com
1887

Multi-criteria optimal sizing of hybrid renewable energy systems including wind, photovoltaic, battery, and hydrogen storage with ɛ-constraint method

Multi-criteria optimal sizing of hybrid renewable energy systems including wind, photovoltaic, battery, and hydrogen storage with ɛ-constraint method

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Hybrid renewable energy systems (HRES) should be designed appropriately with an adequate combination of different renewable sources and various energy storage methods to overcome the problem of intermittency of renewable energy resources. A multi-criteria approach is proposed in this study to design an HRES including wind turbine, photovoltaic panels, fuel cell, electrolyser, hydrogen tank, and battery storage unit with an intermittent load. Three design criteria including loss of power supply probability, total energy loss (TEL), and the power difference between generation and storing capacity (as TELSUB) are taken into account in minimising the total cost of the system considering the interest rate and lifetime. The justifications and advantages of using these criteria are thoroughly discussed along with appropriate presentation of the results. The purpose of considering TEL and TELSUB is discussed thoroughly. The ɛ-constraint method is used to handle practical constraints of the proposed multi-criteria problem to construct a multi-objective fitness function. Shuffled frog leaping algorithm is implemented to achieve better optimal results. The proposed approach is implemented using real wind speed and solar irradiance data for a specific location with an intermittent load demand. The results verify performance of the proposed multi-criteria design procedure.

References

    1. 1)
      • 1. Siddaiah, R., Saini, R.P.: ‘A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications’, Renew. Sustain. Energy Rev., 2016, 58, pp. 376396.
    2. 2)
      • 2. Tezer, T., Yaman, R., Yaman, G.: ‘Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems’, Renew. Sustain. Energy Rev., 2017, 73, pp. 840853.
    3. 3)
      • 3. Bhandari, B., Lee, K.T., Lee, G.Y., et al: ‘Optimization of hybrid renewable energy power systems: a review’, Int. J. Pr. Eng. Man-Gt., 2015, 2, (1), pp. 99112.
    4. 4)
      • 4. Eke, R., Kara, O., Ulgen, K.: ‘Optimization of a wind/PV hybrid power generation system’, Int. J. Green Energy, 2005, 2, (1), pp. 5763.
    5. 5)
      • 5. Elliston, B., MacGill, I., Diesendorf, M.: ‘Least cost 100% renewable electricity scenarios in the Australian national electricity market’, Energy Policy, 2013, 59, pp. 270282.
    6. 6)
      • 6. Garcia, R.S., Weisser, D.: ‘A wind-diesel system with hydrogen storage: joint optimization of design and dispatch’, Renew. Energy, 2006, 31, (14), pp. 22962320.
    7. 7)
      • 7. Kuznia, L., Zeng, B., Centeno, G., et al: ‘Stochastic optimization for power system configuration with renewable energy in remote areas’, Annu. Operat. Res., 2012, 210, (1), pp. 411432.
    8. 8)
      • 8. Giannakoudis, G., Papadopoulos, A.I., Seferlis, P., et al: ‘Optimum design and operation under uncertainty of power systems using renewable energy sources and hydrogen storage’, Hydrog. Energy, 2010, 35, (3), pp. 872889.
    9. 9)
      • 9. Akella, A.K., Sharma, M.P., Saini, R.P.: ‘Optimum utilization of renewable energy sources in a remote area’, Renew. Sustain. Energy Rev., 2007, 11, (5), pp. 894908.
    10. 10)
      • 10. Hanane, D., Ahmed, O., Roberto, S.: ‘Modeling and control of hydrogen and energy flows in a network of green hydrogen refueling stations powered by mixed renewable energy systems’, Int. J. Hydrogen Energy, 2012, 37, (6), pp. 53605371.
    11. 11)
      • 11. Jeremy, L., Marcelo, G.S., Abdellatif, M., et al: ‘Energy cost analysis of a solar hydrogen hybrid energy system for stand-alone applications’, Int. J. Hydrogen Energy, 2008, 33, (12), pp. 28712879.
    12. 12)
      • 12. Orhan, E., Banu, Y.E.: ‘Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing’, Appl. Energy, 2010, 87, (2), pp. 592598.
    13. 13)
      • 13. Kashefi, A., Riahy, G.H., Kouhsari, S.M.: ‘Optimal design of a reliable hydrogen based stand-alone wind/PV generating system, considering component outages’, Renew. Energy, 2009, 34, (11), pp. 23802390.
    14. 14)
      • 14. Katsigiannis, Y.A., Georgilakis, P.S.: ‘Optimal sizing of small isolated hybrid power systems using Tabu search’, Optoelectron. Adv. Mater., 2008, 10, (5), pp. 12411245.
    15. 15)
      • 15. Iniyan, S., Suganthi, L., Anand, A.S.: ‘Energy models for commercial energy prediction and substitution of renewable energy sources’, Energy Policy, 2006, 34, (17), pp. 26402653.
    16. 16)
      • 16. Budischak, C., Sewell, D.A., Thomson, H., et al: ‘Cost minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time’, J. Power Sources, 2013, 225, pp. 6074.
    17. 17)
      • 17. Chang, K.H., Lin, G.: ‘Optimal design of hybrid renewable energy systems using simulation optimization’, Simul. Model. Pract. Theory, 2015, 52, pp. 4051.
    18. 18)
      • 18. Shi, Z., Wang, R., Zhang, T.: ‘Multi-objective optimal design of hybrid renewable energy systems using preference-inspired coevolutionary approach’, Sol. Energy, 2015, 118, pp. 96106.
    19. 19)
      • 19. Kaabeche, A., Ibtiouen, R.: ‘Techno-economic optimization of hybrid photovoltaic/wind/diesel/battery generation in a stand-alone power system’, Sol. Energy, 2014, 103, pp. 171182.
    20. 20)
      • 20. Fetanat, A., Khorasaninejad, E.: ‘Size optimization for hybrid photovoltaic–wind energy system using ant colony optimization for continuous domains based integer programming’, Appl. Soft. Comput., 2015, 31, pp. 196209.
    21. 21)
      • 21. Sanajaoba, S., Fernandez, E.: ‘Maiden application of cuckoo search algorithm for optimal sizing of a remote hybrid renewable energy system’, Renew. Energy, 2016, 96, pp. 110.
    22. 22)
      • 22. Zhao, J., Yuan, X.: ‘Multi-objective optimization of stand-alone hybrid PV-wind-diesel-battery system using improved fruit fly optimization algorithm’, Soft Comput.., 2016, 20, (7), pp. 28412853.
    23. 23)
      • 23. Hussain, S., Al-ammari, R., Iqbal, A., et al: ‘Optimisation of hybrid renewable energy system using iterative filter selection approach’, IET Renew. Power Gener., 2017, 11, (11), pp. 14401445.
    24. 24)
      • 24. Askarzadeh, A.: ‘Solution for sizing a PV/diesel HPGS for isolated sites’, IET Renew. Power Gener., 2016, 11, (1), pp. 143151.
    25. 25)
      • 25. Noguera, A.L., Castellanos, L.S., Lora, E.E., et al: ‘Optimum design of a hybrid diesel-ORC/photovoltaic system using PSO: case study for the city of Cujubim, Brazil’, Energy, 2018, 142, pp. 3345.
    26. 26)
      • 26. Ramli, M.A.M., Bouchekara, H.R.E.H., Alghamdi, A.S.: ‘Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm’, Renew. Energy, 2018, 121, pp. 400411.
    27. 27)
      • 27. Akram, U., Khalid, M., Shafiq, S.: ‘Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system’, IET Renew. Power Gener., 2017, 12, (1), pp. 7280.
    28. 28)
      • 28. Ferrari, L., Bianchini, A., Galli, G., et al: ‘Influence of actual component characteristics on the optimal energy mix of a photovoltaic-wind-diesel hybrid system for a remote off-grid application’, J. Clean. Prod., 2018, 178, pp. 206219.
    29. 29)
      • 29. Singh, S.S., Fernandez, E.: ‘Modeling, size optimization and sensitivity analysis of a remote hybrid renewable energy system’, Energy, 2018, 143, pp. 719731.
    30. 30)
      • 30. Mahmoudimehr, J., Shabani, M.: ‘Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran’, Renew. Energy, 2018, 115, (1), pp. 238251.
    31. 31)
      • 31. Wu, B., Lang, Y., Zargari, N., et al: ‘Power conversion and control of wind energy systems’ (IEEE Press, John Wiley & Sons, New Jersey, 2011).
    32. 32)
      • 32. Khatod, D.K., Pant, V., Sharma, J.: ‘Analytical approach for well-being assessment of small autonomous power systems with solar and wind energy sources’, IEEE Trans. Energy Conver., 2010, 25, pp. 535545.
    33. 33)
      • 33. Masters, G.M.: ‘Renewable and efficient electric power systems’ (IEEE Press, John Wiley & Sons, New Jersey, 2013, 2nd edn.).
    34. 34)
      • 34. Owejan, J.P., Gagliardo, J.J., Sergi, J.M., et al: ‘Water management studies in PEM fuel cells, Part I: fuel cell design and in situ water distributions’, Int. J. Hydrogen Energy, 2009, 34, (8), pp. 34363444.
    35. 35)
      • 35. Yerramalla, S., Davari, A., Feliachi, A., et al: ‘Modeling and simulation of the dynamic behavior of a polymer electrolyte membrane fuel cell’, J. Power Sources, 2003, 124, (1), pp. 104113.
    36. 36)
      • 36. Correa, J.M., Farret, F.A., Canha, L.N., et al: ‘An electrochemical-based fuel-cell model suitable for electrical engineering automation approach’, IEEE Trans. Ind. Electron., 2004, 51, (5), pp. 11031112.
    37. 37)
      • 37. Bajpai, P., Dash, V.: ‘Hybrid renewable energy systems for power generation in stand-alone applications: a review’, Renew. Sustain. Energy Rev., 2012, 16, pp. 29262939.
    38. 38)
      • 38. Nehrir, M.H., Wang, C.: ‘Modeling and control of fuel cells: distributed generation applications’ (IEEE Press, John Wiley & Sons, New Jersey, 2009).
    39. 39)
      • 39. Lebbal, M.E., Lecoeuche, S.: ‘Identification and monitoring of a PEM electrolyser based on dynamical modelling’, Int. J. Hydrogen Energy, 2009, 34, (14), pp. 59925999.
    40. 40)
      • 40. Moschetto, A., Giaquinta, G., Tina, G.: ‘Modelling of integrated renewable energy systems supported by hydrogen storage’. IEEE Lausanne PowerTech, Lausanne, Switzerland, July 2007, pp. 20882092.
    41. 41)
      • 41. Li, C.H., Zhu, X.J., Cao, G.Y., et al: ‘Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology’, Renew. Energy, 2009, 32, (3), pp. 815826.
    42. 42)
      • 42. Zhou, T., Francois, B.: ‘Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system’, Int. J. Hydrogen Energy, 2009, 34, (1), pp. 2130.
    43. 43)
      • 43. Diaf, S., Notton, G., Belhamel, M., et al: ‘Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions’, Appl. Energy, 2008, 85, (10), pp. 968987.
    44. 44)
      • 44. Alsayed, M., Cacciato, M., Scarcella, G., et al: ‘Multi criteria optimal sizing of photovoltaic-wind turbine grid connected systems’, IEEE Trans. Energy Conver., 2013, 28, (2), pp. 370379.
    45. 45)
      • 45. Mavrotas, G.: ‘Effective implementation of the ɛ-constraint method in multi-objective mathematical programming problems’, Appl. Math. Comput., 2009, 213, (2), pp. 455465.
    46. 46)
      • 46. Kaisa, M.M.: ‘Nonlinear multiobjective optimization’ (Springer Science & Business Media, Kluwer Academic Publishers, New York, 1998).
    47. 47)
      • 47. Sarkheyli, A., Zain, A.M., Sharif, S.: ‘The role of basic, modified and hybrid shuffled frog leaping algorithm on optimization problems: a review’, Soft Comput.., 2015, 19, (7), pp. 20112038.
    48. 48)
      • 48. Palli, N., Azarm, S., McCluskey, P., et al: ‘An interactive multistage ɛ-inequality constraint method for multiple objectives decision making’, J. Mech. Design, 1998, 120, (4), pp. 678686.
    49. 49)
      • 49. Luna-Rubio, R., Trejo-Perea, M., Vargas-Vázquez, D., et al: ‘Optimal sizing of renewable hybrids energy systems: a review of methodologies’, Sol. Energ., 2012, 86, (4), pp. 10771088.
    50. 50)
      • 50. Hau, E.: ‘Wind turbines: fundamentals, technologies, application, economics’ (Springer-Verlag, New York, 2013, 3rd Translated edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0706
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0706
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address