http://iet.metastore.ingenta.com
1887

Multi-criteria optimal sizing of hybrid renewable energy systems including wind, photovoltaic, battery, and hydrogen storage with ɛ-constraint method

Multi-criteria optimal sizing of hybrid renewable energy systems including wind, photovoltaic, battery, and hydrogen storage with ɛ-constraint method

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Hybrid renewable energy systems (HRES) should be designed appropriately with an adequate combination of different renewable sources and various energy storage methods to overcome the problem of intermittency of renewable energy resources. A multi-criteria approach is proposed in this study to design an HRES including wind turbine, photovoltaic panels, fuel cell, electrolyser, hydrogen tank, and battery storage unit with an intermittent load. Three design criteria including loss of power supply probability, total energy loss (TEL), and the power difference between generation and storing capacity (as TELSUB) are taken into account in minimising the total cost of the system considering the interest rate and lifetime. The justifications and advantages of using these criteria are thoroughly discussed along with appropriate presentation of the results. The purpose of considering TEL and TELSUB is discussed thoroughly. The ɛ-constraint method is used to handle practical constraints of the proposed multi-criteria problem to construct a multi-objective fitness function. Shuffled frog leaping algorithm is implemented to achieve better optimal results. The proposed approach is implemented using real wind speed and solar irradiance data for a specific location with an intermittent load demand. The results verify performance of the proposed multi-criteria design procedure.

References

    1. 1)
      • R. Siddaiah , R.P. Saini .
        1. Siddaiah, R., Saini, R.P.: ‘A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications’, Renew. Sustain. Energy Rev., 2016, 58, pp. 376396.
        . Renew. Sustain. Energy Rev. , 376 - 396
    2. 2)
      • T. Tezer , R. Yaman , G. Yaman .
        2. Tezer, T., Yaman, R., Yaman, G.: ‘Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems’, Renew. Sustain. Energy Rev., 2017, 73, pp. 840853.
        . Renew. Sustain. Energy Rev. , 840 - 853
    3. 3)
      • B. Bhandari , K.T. Lee , G.Y. Lee .
        3. Bhandari, B., Lee, K.T., Lee, G.Y., et al: ‘Optimization of hybrid renewable energy power systems: a review’, Int. J. Pr. Eng. Man-Gt., 2015, 2, (1), pp. 99112.
        . Int. J. Pr. Eng. Man-Gt. , 1 , 99 - 112
    4. 4)
      • R. Eke , O. Kara , K. Ulgen .
        4. Eke, R., Kara, O., Ulgen, K.: ‘Optimization of a wind/PV hybrid power generation system’, Int. J. Green Energy, 2005, 2, (1), pp. 5763.
        . Int. J. Green Energy , 1 , 57 - 63
    5. 5)
      • B. Elliston , I. MacGill , M. Diesendorf .
        5. Elliston, B., MacGill, I., Diesendorf, M.: ‘Least cost 100% renewable electricity scenarios in the Australian national electricity market’, Energy Policy, 2013, 59, pp. 270282.
        . Energy Policy , 270 - 282
    6. 6)
      • R.S. Garcia , D. Weisser .
        6. Garcia, R.S., Weisser, D.: ‘A wind-diesel system with hydrogen storage: joint optimization of design and dispatch’, Renew. Energy, 2006, 31, (14), pp. 22962320.
        . Renew. Energy , 14 , 2296 - 2320
    7. 7)
      • L. Kuznia , B. Zeng , G. Centeno .
        7. Kuznia, L., Zeng, B., Centeno, G., et al: ‘Stochastic optimization for power system configuration with renewable energy in remote areas’, Annu. Operat. Res., 2012, 210, (1), pp. 411432.
        . Annu. Operat. Res. , 1 , 411 - 432
    8. 8)
      • G. Giannakoudis , A.I. Papadopoulos , P. Seferlis .
        8. Giannakoudis, G., Papadopoulos, A.I., Seferlis, P., et al: ‘Optimum design and operation under uncertainty of power systems using renewable energy sources and hydrogen storage’, Hydrog. Energy, 2010, 35, (3), pp. 872889.
        . Hydrog. Energy , 3 , 872 - 889
    9. 9)
      • A.K. Akella , M.P. Sharma , R.P. Saini .
        9. Akella, A.K., Sharma, M.P., Saini, R.P.: ‘Optimum utilization of renewable energy sources in a remote area’, Renew. Sustain. Energy Rev., 2007, 11, (5), pp. 894908.
        . Renew. Sustain. Energy Rev. , 5 , 894 - 908
    10. 10)
      • D. Hanane , O. Ahmed , S. Roberto .
        10. Hanane, D., Ahmed, O., Roberto, S.: ‘Modeling and control of hydrogen and energy flows in a network of green hydrogen refueling stations powered by mixed renewable energy systems’, Int. J. Hydrogen Energy, 2012, 37, (6), pp. 53605371.
        . Int. J. Hydrogen Energy , 6 , 5360 - 5371
    11. 11)
      • L. Jeremy , G.S. Marcelo , M. Abdellatif .
        11. Jeremy, L., Marcelo, G.S., Abdellatif, M., et al: ‘Energy cost analysis of a solar hydrogen hybrid energy system for stand-alone applications’, Int. J. Hydrogen Energy, 2008, 33, (12), pp. 28712879.
        . Int. J. Hydrogen Energy , 12 , 2871 - 2879
    12. 12)
      • E. Orhan , Y.E. Banu .
        12. Orhan, E., Banu, Y.E.: ‘Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing’, Appl. Energy, 2010, 87, (2), pp. 592598.
        . Appl. Energy , 2 , 592 - 598
    13. 13)
      • A. Kashefi , G.H. Riahy , S.M. Kouhsari .
        13. Kashefi, A., Riahy, G.H., Kouhsari, S.M.: ‘Optimal design of a reliable hydrogen based stand-alone wind/PV generating system, considering component outages’, Renew. Energy, 2009, 34, (11), pp. 23802390.
        . Renew. Energy , 11 , 2380 - 2390
    14. 14)
      • Y.A. Katsigiannis , P.S. Georgilakis .
        14. Katsigiannis, Y.A., Georgilakis, P.S.: ‘Optimal sizing of small isolated hybrid power systems using Tabu search’, Optoelectron. Adv. Mater., 2008, 10, (5), pp. 12411245.
        . Optoelectron. Adv. Mater. , 5 , 1241 - 1245
    15. 15)
      • S. Iniyan , L. Suganthi , A.S. Anand .
        15. Iniyan, S., Suganthi, L., Anand, A.S.: ‘Energy models for commercial energy prediction and substitution of renewable energy sources’, Energy Policy, 2006, 34, (17), pp. 26402653.
        . Energy Policy , 17 , 2640 - 2653
    16. 16)
      • C. Budischak , D.A. Sewell , H. Thomson .
        16. Budischak, C., Sewell, D.A., Thomson, H., et al: ‘Cost minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time’, J. Power Sources, 2013, 225, pp. 6074.
        . J. Power Sources , 60 - 74
    17. 17)
      • K.H. Chang , G. Lin .
        17. Chang, K.H., Lin, G.: ‘Optimal design of hybrid renewable energy systems using simulation optimization’, Simul. Model. Pract. Theory, 2015, 52, pp. 4051.
        . Simul. Model. Pract. Theory , 40 - 51
    18. 18)
      • Z. Shi , R. Wang , T. Zhang .
        18. Shi, Z., Wang, R., Zhang, T.: ‘Multi-objective optimal design of hybrid renewable energy systems using preference-inspired coevolutionary approach’, Sol. Energy, 2015, 118, pp. 96106.
        . Sol. Energy , 96 - 106
    19. 19)
      • A. Kaabeche , R. Ibtiouen .
        19. Kaabeche, A., Ibtiouen, R.: ‘Techno-economic optimization of hybrid photovoltaic/wind/diesel/battery generation in a stand-alone power system’, Sol. Energy, 2014, 103, pp. 171182.
        . Sol. Energy , 171 - 182
    20. 20)
      • A. Fetanat , E. Khorasaninejad .
        20. Fetanat, A., Khorasaninejad, E.: ‘Size optimization for hybrid photovoltaic–wind energy system using ant colony optimization for continuous domains based integer programming’, Appl. Soft. Comput., 2015, 31, pp. 196209.
        . Appl. Soft. Comput. , 196 - 209
    21. 21)
      • S. Sanajaoba , E. Fernandez .
        21. Sanajaoba, S., Fernandez, E.: ‘Maiden application of cuckoo search algorithm for optimal sizing of a remote hybrid renewable energy system’, Renew. Energy, 2016, 96, pp. 110.
        . Renew. Energy , 1 - 10
    22. 22)
      • J. Zhao , X. Yuan .
        22. Zhao, J., Yuan, X.: ‘Multi-objective optimization of stand-alone hybrid PV-wind-diesel-battery system using improved fruit fly optimization algorithm’, Soft Comput.., 2016, 20, (7), pp. 28412853.
        . Soft Comput.. , 7 , 2841 - 2853
    23. 23)
      • S. Hussain , R. Al-ammari , A. Iqbal .
        23. Hussain, S., Al-ammari, R., Iqbal, A., et al: ‘Optimisation of hybrid renewable energy system using iterative filter selection approach’, IET Renew. Power Gener., 2017, 11, (11), pp. 14401445.
        . IET Renew. Power Gener. , 11 , 1440 - 1445
    24. 24)
      • A. Askarzadeh .
        24. Askarzadeh, A.: ‘Solution for sizing a PV/diesel HPGS for isolated sites’, IET Renew. Power Gener., 2016, 11, (1), pp. 143151.
        . IET Renew. Power Gener. , 1 , 143 - 151
    25. 25)
      • A.L. Noguera , L.S. Castellanos , E.E. Lora .
        25. Noguera, A.L., Castellanos, L.S., Lora, E.E., et al: ‘Optimum design of a hybrid diesel-ORC/photovoltaic system using PSO: case study for the city of Cujubim, Brazil’, Energy, 2018, 142, pp. 3345.
        . Energy , 33 - 45
    26. 26)
      • M.A.M. Ramli , H.R.E.H. Bouchekara , A.S. Alghamdi .
        26. Ramli, M.A.M., Bouchekara, H.R.E.H., Alghamdi, A.S.: ‘Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm’, Renew. Energy, 2018, 121, pp. 400411.
        . Renew. Energy , 400 - 411
    27. 27)
      • U. Akram , M. Khalid , S. Shafiq .
        27. Akram, U., Khalid, M., Shafiq, S.: ‘Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system’, IET Renew. Power Gener., 2017, 12, (1), pp. 7280.
        . IET Renew. Power Gener. , 1 , 72 - 80
    28. 28)
      • L. Ferrari , A. Bianchini , G. Galli .
        28. Ferrari, L., Bianchini, A., Galli, G., et al: ‘Influence of actual component characteristics on the optimal energy mix of a photovoltaic-wind-diesel hybrid system for a remote off-grid application’, J. Clean. Prod., 2018, 178, pp. 206219.
        . J. Clean. Prod. , 206 - 219
    29. 29)
      • S.S. Singh , E. Fernandez .
        29. Singh, S.S., Fernandez, E.: ‘Modeling, size optimization and sensitivity analysis of a remote hybrid renewable energy system’, Energy, 2018, 143, pp. 719731.
        . Energy , 719 - 731
    30. 30)
      • J. Mahmoudimehr , M. Shabani .
        30. Mahmoudimehr, J., Shabani, M.: ‘Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran’, Renew. Energy, 2018, 115, (1), pp. 238251.
        . Renew. Energy , 1 , 238 - 251
    31. 31)
      • B. Wu , Y. Lang , N. Zargari . (2011)
        31. Wu, B., Lang, Y., Zargari, N., et al: ‘Power conversion and control of wind energy systems’ (IEEE Press, John Wiley & Sons, New Jersey, 2011).
        .
    32. 32)
      • D.K. Khatod , V. Pant , J. Sharma .
        32. Khatod, D.K., Pant, V., Sharma, J.: ‘Analytical approach for well-being assessment of small autonomous power systems with solar and wind energy sources’, IEEE Trans. Energy Conver., 2010, 25, pp. 535545.
        . IEEE Trans. Energy Conver. , 535 - 545
    33. 33)
      • G.M. Masters . (2013)
        33. Masters, G.M.: ‘Renewable and efficient electric power systems’ (IEEE Press, John Wiley & Sons, New Jersey, 2013, 2nd edn.).
        .
    34. 34)
      • J.P. Owejan , J.J. Gagliardo , J.M. Sergi .
        34. Owejan, J.P., Gagliardo, J.J., Sergi, J.M., et al: ‘Water management studies in PEM fuel cells, Part I: fuel cell design and in situ water distributions’, Int. J. Hydrogen Energy, 2009, 34, (8), pp. 34363444.
        . Int. J. Hydrogen Energy , 8 , 3436 - 3444
    35. 35)
      • S. Yerramalla , A. Davari , A. Feliachi .
        35. Yerramalla, S., Davari, A., Feliachi, A., et al: ‘Modeling and simulation of the dynamic behavior of a polymer electrolyte membrane fuel cell’, J. Power Sources, 2003, 124, (1), pp. 104113.
        . J. Power Sources , 1 , 104 - 113
    36. 36)
      • J.M. Correa , F.A. Farret , L.N. Canha .
        36. Correa, J.M., Farret, F.A., Canha, L.N., et al: ‘An electrochemical-based fuel-cell model suitable for electrical engineering automation approach’, IEEE Trans. Ind. Electron., 2004, 51, (5), pp. 11031112.
        . IEEE Trans. Ind. Electron. , 5 , 1103 - 1112
    37. 37)
      • P. Bajpai , V. Dash .
        37. Bajpai, P., Dash, V.: ‘Hybrid renewable energy systems for power generation in stand-alone applications: a review’, Renew. Sustain. Energy Rev., 2012, 16, pp. 29262939.
        . Renew. Sustain. Energy Rev. , 2926 - 2939
    38. 38)
      • M.H. Nehrir , C. Wang . (2009)
        38. Nehrir, M.H., Wang, C.: ‘Modeling and control of fuel cells: distributed generation applications’ (IEEE Press, John Wiley & Sons, New Jersey, 2009).
        .
    39. 39)
      • M.E. Lebbal , S. Lecoeuche .
        39. Lebbal, M.E., Lecoeuche, S.: ‘Identification and monitoring of a PEM electrolyser based on dynamical modelling’, Int. J. Hydrogen Energy, 2009, 34, (14), pp. 59925999.
        . Int. J. Hydrogen Energy , 14 , 5992 - 5999
    40. 40)
      • A. Moschetto , G. Giaquinta , G. Tina .
        40. Moschetto, A., Giaquinta, G., Tina, G.: ‘Modelling of integrated renewable energy systems supported by hydrogen storage’. IEEE Lausanne PowerTech, Lausanne, Switzerland, July 2007, pp. 20882092.
        . IEEE Lausanne PowerTech , 2088 - 2092
    41. 41)
      • C.H. Li , X.J. Zhu , G.Y. Cao .
        41. Li, C.H., Zhu, X.J., Cao, G.Y., et al: ‘Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology’, Renew. Energy, 2009, 32, (3), pp. 815826.
        . Renew. Energy , 3 , 815 - 826
    42. 42)
      • T. Zhou , B. Francois .
        42. Zhou, T., Francois, B.: ‘Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system’, Int. J. Hydrogen Energy, 2009, 34, (1), pp. 2130.
        . Int. J. Hydrogen Energy , 1 , 21 - 30
    43. 43)
      • S. Diaf , G. Notton , M. Belhamel .
        43. Diaf, S., Notton, G., Belhamel, M., et al: ‘Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions’, Appl. Energy, 2008, 85, (10), pp. 968987.
        . Appl. Energy , 10 , 968 - 987
    44. 44)
      • M. Alsayed , M. Cacciato , G. Scarcella .
        44. Alsayed, M., Cacciato, M., Scarcella, G., et al: ‘Multi criteria optimal sizing of photovoltaic-wind turbine grid connected systems’, IEEE Trans. Energy Conver., 2013, 28, (2), pp. 370379.
        . IEEE Trans. Energy Conver. , 2 , 370 - 379
    45. 45)
      • G. Mavrotas .
        45. Mavrotas, G.: ‘Effective implementation of the ɛ-constraint method in multi-objective mathematical programming problems’, Appl. Math. Comput., 2009, 213, (2), pp. 455465.
        . Appl. Math. Comput. , 2 , 455 - 465
    46. 46)
      • M.M. Kaisa . (1998)
        46. Kaisa, M.M.: ‘Nonlinear multiobjective optimization’ (Springer Science & Business Media, Kluwer Academic Publishers, New York, 1998).
        .
    47. 47)
      • A. Sarkheyli , A.M. Zain , S. Sharif .
        47. Sarkheyli, A., Zain, A.M., Sharif, S.: ‘The role of basic, modified and hybrid shuffled frog leaping algorithm on optimization problems: a review’, Soft Comput.., 2015, 19, (7), pp. 20112038.
        . Soft Comput.. , 7 , 2011 - 2038
    48. 48)
      • N. Palli , S. Azarm , P. McCluskey .
        48. Palli, N., Azarm, S., McCluskey, P., et al: ‘An interactive multistage ɛ-inequality constraint method for multiple objectives decision making’, J. Mech. Design, 1998, 120, (4), pp. 678686.
        . J. Mech. Design , 4 , 678 - 686
    49. 49)
      • R. Luna-Rubio , M. Trejo-Perea , D. Vargas-Vázquez .
        49. Luna-Rubio, R., Trejo-Perea, M., Vargas-Vázquez, D., et al: ‘Optimal sizing of renewable hybrids energy systems: a review of methodologies’, Sol. Energ., 2012, 86, (4), pp. 10771088.
        . Sol. Energ. , 4 , 1077 - 1088
    50. 50)
      • E. Hau . (2013)
        50. Hau, E.: ‘Wind turbines: fundamentals, technologies, application, economics’ (Springer-Verlag, New York, 2013, 3rd Translated edn.).
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0706
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0706
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address