Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Review of technical issues influencing the decoupling of DG converter design from the distribution system protection strategy

Several issues need to be considered in the design and control of converters for converter-interfaced distributed generators (DGs). Under fault conditions, the semiconductor devices withstand ratings must not be exceeded. The converter control strategy is also required to facilitate fault ride through (FRT) capability. On the other hand, protection against fault is better served by employing control strategies that allow the converter-interfaced DGs to contribute short duration fault current sufficient to aid the detection of faults. Semiconductor devices protection and FRT capability have the same objective of limiting the magnitude of the fault current. Protection coordination in the complex DG-integrated network is difficult and may result in protection settings that are not optimal or contribute to long relay operating times that may impact FRT support. On this basis, this study proposes the de-coupling of the protection solution from FRT and semiconductor device considerations. This study critically reviews various strategies proposed in the literature for the protection of the DG-integrated distribution system and develops an argument that aims to influence a paradigm shift towards voltage-based protection that may see protection design decoupled from inverter design and control, since fault current contribution may not be required to achieve effective protection.

References

    1. 1)
      • 70. Zhanga, G., Shub, H., Liao, Y.: ‘Automated double-ended traveling wave record correlation for transmission line disturbance analysis’, Electr. Power Syst. Res., 2016, 136, pp. 242250.
    2. 2)
      • 24. Mahari, A., Heyedi, H.: ‘An analytic approach for optimal coordination of overcurrent relays’, IET Gener. Transm. Distrib., 2013, 7, (7), pp. 674680.
    3. 3)
      • 89. Gao, F., Iravani, M.R.: ‘A control strategy for a distributed generation unit in grid-connected and autonomous modes of operation’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 850859.
    4. 4)
      • 55. Kauhaniemi, K., Kumpulainen, L.: ‘Impact of distributed generation on the protection of distribution networks’. Proc. 8th IEE Int. Conf. Developments in Power System Protection, Amsterdam, Netherlands, April 2004, pp. 315318.
    5. 5)
      • 90. Ambati, B.B., Kanjiya, P., Khadkikar, V.: ‘A low component count series voltage compensation scheme for DFIG WTs to enhance fault ride-through capability’, IEEE Trans. Energy Convers., 2014, 30, (1), pp. 208217.
    6. 6)
      • 16. Urdaneta, A.J., Perez, L.G., Gomez, J.F., et al: ‘Presolve analysis and interior point solutions of the linear programming coordination problem of directional overcurrent relays’, Int. J. Electr. Power Energy Syst., 2000, 23, pp. 819825.
    7. 7)
      • 57. Bansal, R.C.: ‘Bibliography on the fuzzy set theory applications in power systems’, IEEE Trans. Power Syst., 2003, 18, (4), pp. 12911299.
    8. 8)
      • 84. RSA Grid Code Secretariat: ‘National energy regulator of South Africa’, 2014. http://www.nersa.org.za/Admin/Document/Editor/file/Electricity/TechnicalStandards/South%20African%20Grid%20Code%20Requirements%20for%20Renewable%20Power%20Plants%20-%20Version%202%208.pdf, accessed 26 January 2018.
    9. 9)
      • 73. Kucuksari, S., Karady, G.G.: ‘Experimental comparison of conventional and optical VTs, and circuit model for optical VT’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 15711578.
    10. 10)
      • 81. IEEE Standard 1547.: ‘IEEE standard for interconnecting distributed resources with electric power systems’, IEEE, 2008.
    11. 11)
      • 17. Birla, D., Maheshwari, R.P., Gupta, H.O.: ‘A new nonlinear directional overcurrent relay coordination technique, and banes and boons of near-end faults based approach’, IEEE Trans. Power Deliv., 2006, 21, (3), pp. 11761182.
    12. 12)
      • 15. Bhattacharya, S.K., Goswami, S.K.: ‘Distribution network reconfiguration considering protection coordination constraints’, Electr. Power Compon. Syst., 2008, 36, (11), pp. 11501165.
    13. 13)
      • 61. Tuitemwong, K., Premrudeepreechacharn, S.: ‘Expert system for protection coordination of distribution system with distributed generators’, Int. J. Electr. Power Energy Syst., 2011, 33, pp. 466471.
    14. 14)
      • 48. He, J., Wang, Z., Zhang, Q., et al: ‘Distributed protection for smart substations based on multiple overlapping units’, CSEE J. Power Energy Syst., 2016, 2, (4), pp. 4450.
    15. 15)
      • 7. Boutsika, T.N., Papathanassio, S.A.: ‘Short-circuit calculations in networks with distributed generation’, Electr. Power Syst. Res., 2008, 78, pp. 11811191.
    16. 16)
      • 47. Wan, H., Li, K.K., Wong, K.P.: ‘An adaptive multiagent approach to protection relay coordination with distributed generators in industrial power distribution system’, IEEE Trans. Ind. Appl., 2010, 46, (5), pp. 21182124.
    17. 17)
      • 94. Naderi, S.B., Negnevitsky, M., Jalilian, A., et al: ‘Fault ride through improvement of fixed speed wind turbine using CR-FCL with its modified control strategy’. Proc. Australasian Universities Power Engineering Conf. (AUPEC), Brisbane, Australia, September 2016, pp. 16.
    18. 18)
      • 69. Hasheminejad, S., Seifossadat, S.G., Razaz, M., et al: ‘Ultra-high-speed protection of transmission lines using traveling wave theory’, Electr. Power Syst. Res., 2016, 132, pp. 94103.
    19. 19)
      • 9. Dewadasa, M., Ghosh, A., Ledwich, G.: ‘Fold back current control and admittance protection scheme for a distribution network containing distributed generators’, IET Gener. Transm. Distrib., 2010, 4, pp. 952962.
    20. 20)
      • 44. Brahma, S.M., Girgis, A.A.: ‘Development of adaptive protection scheme for distribution systems with high penetration of distributed generation’, IEEE Trans. Power Deliv., 2004, 19, (1), pp. 5663.
    21. 21)
      • 2. Lupangu, C., Bansal, R.C.: ‘A review of technical issues on the development of photovoltaic systems’, Renew. Sustain. Energy Rev., 2017, 73, pp. 950965.
    22. 22)
      • 27. Ibrahima, A.M., El-Khattama, W., Elmesallamyb, M., et al: ‘Adaptive protection coordination scheme for distribution network with distributed generation using’, J. Electr. Syst. Inf. Technol., 2016, 3, pp. 320332.
    23. 23)
      • 82. Eltigani, D., Masri, S.: ‘Challenges of integrating renewable energy sources to smart grids: a review’, Renew. Sustain. Energy Rev., 2015, 52, pp. 770780.
    24. 24)
      • 26. Alipour, M., Teimourzadeh, S., Seyedi, H.: ‘Improved group search optimization algorithm for coordination’, Swarm Evol. Comput., 2015, 23, pp. 4049.
    25. 25)
      • 101. Manditereza, P.T., Bansal, R.C.: ‘Fault detection and location algorithm for DG-integrated distribution systems’. Accepted for publication in IET-Developments in Power Systems Protection (DPSP) Conf., Belfast, UK, 12–15 March 2018.
    26. 26)
      • 86. Sadd, N.H., Sattar, A.A., Mansour, A.E.M.: ‘Low voltage ride-through of doubly fed induction generator connected to the grid using sliding mode control strategy’, Renew. Energy, 2015, 80, pp. 583594.
    27. 27)
      • 63. Oureilidis, K.O., Demoulias, C.S.: ‘A fault clearing method in converter-dominated microgrids with conventional protection means’, IEEE Trans. Power Electron., 2016, 31, (6), pp. 46284640.
    28. 28)
      • 54. Hyun, L., Wang, S.H.: ‘A new fault location method for distribution system under smart grid environment’. Proc. 6th IEEE Int. Forum on Strategic Technology, Harbin, 2011, pp. 469472.
    29. 29)
      • 77. Javadian, S.A.M., Haghifam, M.R., Bathaee, S.M.T., et al: ‘Adaptive centralized protection scheme for distribution systems with DG using risk analysis for protective devices placement’, Int. J. Electr. Power Energy Syst., 2013, 44, pp. 337345.
    30. 30)
      • 40. Slabbert, M.J., Naidoo, R., Bansal, R.C.: ‘Adaptive protection settings for medium voltage feeders’. Proc. SAIEE Smart Grid Conf., Johannesburg, South Africa, February 2016, pp. 15.
    31. 31)
      • 64. Saleh, S.A.: ‘Signature-coordinated digital multirelay protection for microgrid systems’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 46144623.
    32. 32)
      • 28. Yazdaninejadi, A., Nazarpour, D., Golshannavaz, S.: ‘Dual-setting directional over-current relays: an optimal coordination in multiple source meshed distribution networks’, Int. J. Electr. Power Energy Syst., 2017, 86, pp. 163176.
    33. 33)
      • 23. Alam, M.N., Das, B., Pant, V.: ‘An interior point method based protection coordination scheme for directional overcurrent relays in meshed networks’, Int. J. Electr. Power Energy Syst., 2016, 81, pp. 153164.
    34. 34)
      • 43. Zhou, L., Wang, L., Cheung, H., et al: ‘Adaptive protection and control strategy for interfacing wind generators to distribution grids’. Proc. IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, Wuhan, China, October 2008, pp. 18.
    35. 35)
      • 34. Abdel-Ghany, H.A., Azmy, A.M., Elkalashy, N.I., et al: ‘Optimizing DG penetration in distribution networks concerning protection schemes and technical impact’, Electr. Power Syst. Res., 2015, 128, pp. 113122.
    36. 36)
      • 42. Zamani, A., Sidhu, T., Yazdani, A.: ‘A strategy for protection coordination in radial distribution networks with distributed generators’. Proc. IEEE Power and Energy Society General Meeting, Providence, USA, July 2010, pp. 18.
    37. 37)
      • 92. Ebrahimi, E., Sanjari, M.J., Gharehpetian, G.B.: ‘Control of three-phase inverter-based DG system during fault condition without changing protection coordination’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 814823.
    38. 38)
      • 41. Shah, P.H., Bhalja, B.R: ‘New adaptive digital relaying scheme to tackle recloser-fuse miscoordination during distributed generation interconnections’, IET Gener. Transm. Distrib., 2014, 8, pp. 682688.
    39. 39)
      • 14. Urdaneta, A.J., Restrepo, H., Marquez, S., et al: ‘Coordination of directional overcurrent relay timing using linear programming’, IEEE Trans. Power Deliv., 1996, 11, (1), pp. 122129.
    40. 40)
      • 10. Pei, X., Kang, Y.: ‘Short-circuit fault protection strategy for high-power three-phase three-wire inverter’, IEEE Trans. Ind. Inf., 2012, 8, (3), pp. 545553.
    41. 41)
      • 67. Liu, Y., Sheng, G., Hu, Y., et al: ‘Identification of lightning strike on 500-kV transmission line based on the time-domain parameters of a traveling wave’, IEEE Access, 2016, 4, pp. 72417250.
    42. 42)
      • 56. Uyar, O., Cunkas, M.: ‘Fuzzy logic-based induction motor protection system’, Neural Comput. Appl., 2013, 23, (1), pp. 3140.
    43. 43)
      • 37. Hien, N.C., Mithulananthan, N., Bansal, R.C.: ‘Location and sizing of distribution generation units for loadability enhancement in primary feeder’, IEEE Syst. J., 2013, 7, (4), pp. 797806.
    44. 44)
      • 3. Bansal, R.C.: ‘Handbook of distributed generation: electric power technologies, economics and environmental impacts’ (Springer, New York, 2017).
    45. 45)
      • 51. Gururajapathy, S.S., Mokhlis, H., Illias, H.A.: ‘Fault location and detection techniques in power distribution systems with distributed generation: a review’, Renew. Sustain. Energy Rev., 2017, 74, pp. 949958.
    46. 46)
      • 4. Roy, N.K., Pota, H.R.: ‘Current status and issues of concern for the integration of distributed generation into electricity networks’, IEEE Syst. J., 2014, 9, (3), pp. 933944.
    47. 47)
      • 30. Srivastava, A., Tripathi, J.M., Mohanty, S.R., et al: ‘Optimal over-current relay coordination with distributed generation using hybrid particle swarm optimization–gravitational search algorithm’, Electr. Power Compon. Syst., 2016, 44, (5), pp. 506517.
    48. 48)
      • 25. Alam, M.N., Das, B., Pant, V.: ‘A comparative study of metaheuristic optimization approaches fordirectional overcurrent relays coordination’, Electr. Power Syst. Res., 2015, 128, pp. 3952.
    49. 49)
      • 6. Manditereza, P.T., Bansal, R.C.: ‘Renewable distributed generation: the hidden challenges – a review from the protection perspective’, Renew. Sustain. Energy Rev., 2016, 58, pp. 14571465.
    50. 50)
      • 91. Kanjiya, P., Ambati, B.B., Khadkikar, V.: ‘A novel fault-tolerant DFIG-based wind energy conversion system for seamless operation during grid faults’, IEEE Trans. Power Syst., 2013, 29, (3), pp. 12961305.
    51. 51)
      • 8. Jennett, K., Coffele, F., Booth, C.: ‘Comprehensive and quantitative analysis of protection problems associated with increasing penetration of inverter-interfaced DG’. Proc. 11th IET Int. Conf. Developments in Power Systems Protection, Birmingham, UK, July 2012, pp. 16.
    52. 52)
      • 22. Thakur, M., Kumar, A.: ‘Optimal coordination of directional over current relays using a modified real coded genetic algorithm: a comparative study’, Int. J. Electric. Power Energy Syst., 2016, 82, pp. 484495.
    53. 53)
      • 50. Habib, H.F., Youssef, T., Cintuglu, M.H., et al: ‘Multi-agent-based technique for fault location, isolation, and service restoration’, IEEE Trans. Ind. Appl., 2017, 53, (3), pp. 18411851.
    54. 54)
      • 53. Ebrahimi, E., Ghanizadeh, A.J., Rahmatian, M., et al: ‘Impact of distributed generation on fault locating methods in distribution networks’. Proc. Int. Conf. Renewable Energies and Power Quality, Santiago de Compostela, Spain, March 2012, pp. 11951199.
    55. 55)
      • 74. Jafarian, P., Sanaye-Pasand, M.: ‘A traveling-wave-based protection technique using wavelet/PCA analysis’, IEEE Trans. Power Deliv., 2010, 25, (2), pp. 588599.
    56. 56)
      • 39. Adefarati, T., Bansal, R.C.: ‘Integration of renewable distributed generators into the distribution system: a review’, IET-Renew. Power Gener., 2016, 10, (7), pp. 873884.
    57. 57)
      • 11. Eissa, M.M.: ‘Protection techniques with renewable resources and smart grids – a survey’, Renew. Sustain. Energy Rev., 2015, 52, pp. 16451667.
    58. 58)
      • 80. Gkavanoudis, S.I., Demoulias, C.S.: ‘A combined fault ride-through and power smoothing control method for full-converter wind turbines employing supercapacitor energy storage system’, Electr. Power Syst. Res., 2014, 106, pp. 6272.
    59. 59)
      • 45. Esmaeili, A., Esmaeili, S., Hojabri, H.: ‘Short-circuit level control through a multi-objective feeder reconfiguration using fault current limiters in the presence of distributed generations’, IET Gener. Transm. Distrib., 2016, 10, (14), pp. 34583469.
    60. 60)
      • 52. Sinclair, A., Finny, D., Martin, D., et al: ‘Distance protection in distribution systems: how it assists with integrating distributed resources’, IEEE Trans. Ind. Appl., 2014, 50, (3), pp. 21862196.
    61. 61)
      • 65. Bollen, M.H.J.: ‘On travelling-wave-based protection of high-voltage networks’. PhD Thesis, Eindhoven University of Technology, 1989.
    62. 62)
      • 35. Huy, P.D., Ramachandaramurthy, V.K., Pesaran, M.: ‘A review of the optimal allocation of distributed generation: objectives, constraints, methods, and algorithms’, Renew. Sustain. Energy Rev., 2017, 75, pp. 293312.
    63. 63)
      • 66. Schweitzer, E.O., Guzman, A., Mynam, M.V., et al: ‘Locating faults by the traveling waves they launch’. Proc. 67th Annual Conf. Protective Relay Engineers, College Station, USA, March/April 2014, pp. 116.
    64. 64)
      • 99. Tumilty, R.M., Brucoli, M., Burt, G.M., et al: ‘Approaches to network protection for inverter dominated electrical distribution systems’. Proc. 3rd IET Int. Conf. Power Electronics, Machines and Drives, Dublin, Ireland, April 2006, pp. 622626.
    65. 65)
      • 100. Al-Nasseri, H., Redfern, M.A.: ‘Harmonics content based protection scheme for micro-grids dominated by solid state converters’. Proc. 12th Int. Middle-East Power System Conf. (MEPCON), Aswan, Egypt, March 2008, pp. 5056.
    66. 66)
      • 29. Yamchi, Y., Sadeh, J., Mashhadi, H.R.: ‘Applying hybrid interval linear programming and genetic algorithm to coordinate distance and directional over-current relays’, Electr. Power Compon. Syst., 2016, 44, (17), pp. 19351946.
    67. 67)
      • 12. Rashida, G., Ali, M.H.: ‘Fault ride through capability improvement of DFIG based wind farm by fuzzy logic controlled parallel resonance fault current limiter’, Electr. Power Syst. Res., 2017, 146, pp. 18.
    68. 68)
      • 38. Hung, D.Q., Mithulananthan, N., Bansal, R.C.: ‘A combined approach of DG, capacitor placement and reconfiguration for loss reduction in distribution networks’, Int. J. Ambient Energy, 2013, 105, pp. 7585.
    69. 69)
      • 87. Morshed, M.J., Fekih, A: ‘A new fault ride-through control for DFIG-based wind energy systems’, Electr. Power Syst. Res., 2017, 146, pp. 258269.
    70. 70)
      • 76. Zayandehroodi, H., Mohamed, A., Shareef, H., et al: ‘A novel protection coordination strategy using back tracking algorithm for distribution systems with high penetration of DG’. Proc. IEEE Int. Power Engineering and Optimization Conf., Melaka, Malaysia, June 2012, pp. 187192.
    71. 71)
      • 79. Guo, W.M., Mu, L.H., Zhang, X.: ‘Fault models of inverter-interfaced distributed generators within a low-voltage microgrid’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 453461.
    72. 72)
      • 5. Chaitusaney, S., Yokohama, A.: ‘Prevention of reliability degradation from recloser-fuse miscoordination due to distributed generation’, IEEE Trans. Power Deliv., 2008, 23, (4), pp. 25452554.
    73. 73)
      • 62. Morales, J., Orduña, E.A., Rehtanz, C.: ‘Identification of lightning stroke due to shielding failure and backflashover for ultra-high-speed transmission-line protection’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 20082017.
    74. 74)
      • 20. Bedekar, P.P., Bhide, S.R., Kale, V.S.: ‘Optimum coordination of overcurrent relay timing using simplex method’, Electric. Power Compon. Syst., 2010, 38, (10), pp. 11751193.
    75. 75)
      • 36. Hadjsaid, N., Canard, J.F., Dumas, F: ‘Dispersed generation impact on distribution networks’, IEEE Comput. Appl. Power, 1999, 12, (2), pp. 2228.
    76. 76)
      • 19. Ahmadi, S.A, Karami, H., Sanjari, M.J., et al: ‘Application of hyper-spherical search algorithm for optimal coordination of overcurrent relays considering different relay characteristics’, Int. J. Electr. Power Energy Syst., 2016, 83, pp. 443449.
    77. 77)
      • 58. Aggarwal, R., Song, Y.: ‘Artificial neural networks in power systems. III. Examples of applications in power systems’, Power Eng. J., 1998, 12, (6), pp. 279287.
    78. 78)
      • 93. Naderi, S.B., Negnevitsky, M., Jalilian, A., et al: ‘Low voltage ride-through enhancement of DFIG-based wind turbine using DC link switchable resistive type fault current limiter’, Int. J. Electr. Power Energy Syst., 2017, 86, pp. 104119.
    79. 79)
      • 78. Rezaei, N., Haghifam, M.R.: ‘Protection scheme for a distribution system with distributed generation using neural networks’, Int. J. Electr. Power Energy Syst., 2008, 30, pp. 235241.
    80. 80)
      • 98. Al-Nasseri, H., Redfern, M.A., Li, F.: ‘A voltage based protection for micro-grids containing power electronic converters’. Proc. IEEE Power Engineering Society General Meeting, Montreal, Canada, June 2006, pp. 15.
    81. 81)
      • 88. Naderi, S.B., Negnevitsky, M., Jalilian, A., et al: ‘Efficient fault ride-through scheme for three phase voltage source inverter-interfaced distributed generation using DC link adjustable resistive type fault current limiter’, Renew. Energy, 2016, 92, pp. 484498.
    82. 82)
      • 102. Manditereza, P.T., Bansal, R.C.: ‘Multi-agent based distributed voltage control algorithm for smart grid applications’, Electr. Power Compon. Syst., 2016, 44, (20), pp. 23522363.
    83. 83)
      • 60. Bansal, R.C.: ‘Literature survey on expert system applications in power systems (1990–2001)’, Eng. Intell. Syst., 2003, 3, pp. 103112.
    84. 84)
      • 46. Lim, S.H., Kim, J.S., Kim, M.H., et al: ‘Improvement of protection coordination of protective devices through application of a sfcl in a power distribution system with a dispersed generation’, IEEE Trans. Appl. Supercond., 2012, 22, (3), pp. 14.
    85. 85)
      • 1. Kennedy, J., Ciufo, P., Agalgaonkar, A.: ‘A review of protection systems for distribution networks embedded with renewable generation’, Renew. Sustain. Energy Rev., 2016, 58, (1), pp. 13081317.
    86. 86)
      • 18. Saleh, K.H., El Moursi, M.S., Zeineldin, H.H.: ‘A new protection scheme considering fault ride through requirements for transmission level interconnected wind parks’, IEEE Trans. Ind. Inf., 2015, 11, (6), pp. 13241333.
    87. 87)
      • 75. Li, H., Wang, G., Liao, Z.: ‘Distinguish between lightning strikes and faults using wavelet-multi resolution signal decomposition’. Proc. Eighth IEE Int. Conf. Developments in Power System Protection, Amsterdam, Netherlands, 2004, pp. 8083.
    88. 88)
      • 33. Naiem, A.F., Hegazy, Y., Abdelaziz, A.Y., et al: ‘A classification technique for recloser-fuse coordination in distribution systems with distributed generation’, IEEE Trans. Power Deliv., 2012, 27, (1), pp. 176186.
    89. 89)
      • 96. Gong, W., Wang, Y., Hu, S., et al: ‘A survey on recent low voltage ride-through solutions of large scale wind farm’. Proc. Asia-Pacific Power and Energy Engineering Conf. (APPEEC), Wuhan, China, March 2011, pp. 15.
    90. 90)
      • 95. Gkavanoudis, S.I., Demoulias, C.S.: ‘Fault ride-through capability of a DFIG in isolated grids employing DVR and supercapacitor energy storage’, Int. J. Electr. Power Energy Syst., 2015, 68, pp. 356363.
    91. 91)
      • 32. Bedekarm, P.P., Bhide, S.R.: ‘Optimum coordination of directional overcurrent relays using the hybrid GA-NLP approach’, IEEE Trans. Power Deliv., 2011, 26, (1), pp. 109119.
    92. 92)
      • 49. Brearley, B.J., Prabu, R.R.: ‘A review on issues and approaches for microgrid protection’, Renew. Sustain. Energy Rev., 2017, 67, pp. 988997.
    93. 93)
      • 31. Alkaran, D.S., Vatani, M.R., Sanjari, M.J., et al: ‘Optimal overcurrent relay coordination in interconnected networks by using fuzzy-based GA method’, IEEE Trans. Smart Grid, 2016, doi: 10.1109/TSG.2016.2626393, early access.
    94. 94)
      • 13. Varma, R.K., Rahman, S.A., Atodaria, V., et al: ‘Technique for fast detection of short circuit current in PV distributed generator’, IEEE Power Energy Technol. Syst. J., 2016, 3, (4), pp. 155165.
    95. 95)
      • 97. Nasiri, M., Milimonfared, J., Fathi, S.H.: ‘A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines’, Renew. Sustain. Energy Rev., 2015, 47, pp. 339415.
    96. 96)
      • 71. Stiegler, R., Meyer, J., Schegner, P.: ‘Portable measurement system for the frequency response of voltage transformers’. Proc. IEEE 15th Int. Conf. Harmonics and Quality of Power (ICHQP), Hong Kong, China, June 2012, pp. 16.
    97. 97)
      • 85. Baran, M.E., EI-Markaby, I.: ‘Fault analysis on distribution feeders with distributed generators’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 17571764.
    98. 98)
      • 83. Howlader, A.M., Senjyu, T.: ‘A comprehensive review of low voltage ride through capability strategies for the wind energy conversion systems’, Renew. Sustain. Energy Rev., 2016, 56, pp. 643658.
    99. 99)
      • 72. Houtzager, E., Mohns, E., Fricke, S., et al: ‘Calibration systems for analogue non-conventional voltage and current transducers’. Proc. Conf. Precision Electromagnetic Measurements (CPEM), Ottawa, Canada, July 2016, pp. 12.
    100. 100)
      • 68. Jin-Feng, R., Jian-Dong, D., Bao-Hui, Z., et al: ‘Identification of lightning disturbance in ultra-high-speed transmission line protection’. Proc. IEEE/PES Transmission and Distribution Conf. and Exhibition: Asia and Pacific, Dalian, China, 2005, pp. 15.
    101. 101)
      • 21. Chattopahyay, B., Sachdev, M.S., Sidhu, T.S.: ‘An on-line relay coordination algorithm for adaptive protection using linear programming technique’, IEEE Trans. Power Deliv., 1996, 11, (1), pp. 165173.
    102. 102)
      • 59. Bansal, R.C.: ‘Optimization methods for electric power systems: an overview’, Int. J. Emerg. Electric. Power Syst., 2005, 2, (1), pp. 125.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0670
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0670
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address