Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Microgrid energy and reserve management incorporating prosumer behind-the-meter resources

The unpredictable nature of renewable power, coupled with the influx of prosumers has made accurate power forecasts in microgrids (MGs) more difficult to obtain. A direct consequence of this is the need for additional spinning reserve (SR) capacity to compensate for resulting power imbalances. Due to the economic and environmental concerns, increasing conventional generation to meet this additional SR capacity is undesirable. The aggregation of prosumer behind-the-meter resources for the provision of SR is proposed in this study, and a mathematical model for the proposed scheme is developed. This scheme is formulated as a constrained optimisation problem, whose solution maintains power supply and demand balance whilst reserving a virtual spinning capacity. The formulation is linearised and solved using the CPLEX 12.6.3 solver in the Advanced Interactive Multidimensional Modelling System environment. A 14-bus MG test system is used to validate the proposed scheme, and results show the benefits of using prosumer behind-the-meter resources to provide ancillary services like SR.

References

    1. 1)
      • 18. Brooks, A., Lu, E., Reicher, D., et al: ‘Demand dispatch’, IEEE Power Energy Mag., 2010, 8, (3), pp. 2029.
    2. 2)
      • 33. Hussain, A., Bui, V.H., Kim, H.M.: ‘Optimal operation of hybrid microgrids for enhancing resiliency considering feasible islanding and survivability’, IET Renew. Power Gener., 2017, 11, (6), pp. 846857.
    3. 3)
      • 3. Motalleb, M., Thornton, M., Reihani, E., et al: ‘A nascent market for contingency reserve services using demand response’, Appl. Energy, 2016, 179, pp. 985995.
    4. 4)
      • 25. Zakariazadeh, A., Jadid, S., Siano, P.: ‘Smart microgrid energy and reserve scheduling with demand response using stochastic optimization’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 523533.
    5. 5)
      • 21. Arnone, D., Barberi, A., La Cascia, D., et al: ‘Smart grid integrated green data centres as ancillary service providers’. 2015 IEEE Int. Conf. on Clean Electrical Power (ICCEP), Taormina, 16 June 2015, pp. 170177.
    6. 6)
      • 20. Clausen, A., Ghatikar, G.: ‘Load management of data centers as regulation capacity in Denmark’. IEEE 2014 Int. Green Computing Conf. (IGCC), Dallas, TX, 3 November 2014, pp. 110.
    7. 7)
      • 6. Energy, G.E.: ‘Western wind and solar integration study' (National Renewable Energy Laboratory (NREL), Golden, CO, 2010).
    8. 8)
      • 27. Mohan, V., Singh, J.G., Ongsakul, W.: ‘An efficient two stage stochastic optimal energy and reserve management in a microgrid’, Appl. Energy, 2015, 160, pp. 2838.
    9. 9)
      • 24. Zakariazadeh, A., Jadid, S.: ‘Smart microgrid operational planning considering multiple demand response programs’, J. Renew. Sustain. Energy, 2014, 6, (1), p. 013134.
    10. 10)
      • 13. Hollinger, R., Diazgranados, L.M., Braam, F., et al: ‘Distributed solar battery systems providing primary control reserve’, IET Renew. Power Gener., 2016, 10, (1), pp. 6370.
    11. 11)
      • 19. Pourmousavi, S.A., Nehrir, M.H.: ‘Real-time central demand response for primary frequency regulation in microgrids’, IEEE Trans. Smart Grid., 2012, 3, (4), pp. 19881996.
    12. 12)
      • 28. Cecati, C., Citro, C., Siano, P.: ‘Combined operations of renewable energy systems and responsive demand in a smart grid’, IEEE Trans. Sustain. Energy, 2011, 2, (4), pp. 468476.
    13. 13)
      • 14. Sortomme, E., El-Sharkawi, M.A.: ‘Optimal scheduling of vehicle-to-grid energy and ancillary services’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 351359.
    14. 14)
      • 29. Tazvinga, H., Xia, X., Zhang, J.: ‘Minimum cost solution of photovoltaic–diesel–battery hybrid power systems for remote consumers’, Sol. Energy, 2013, 96, pp. 292299.
    15. 15)
      • 16. Pavić, I., Capuder, T., Kuzle, I.: ‘Value of flexible electric vehicles in providing spinning reserve services’, Appl. Energy, 2015, 157, pp. 6074.
    16. 16)
      • 5. Cappers, P., MacDonald, J., Goldman, C., et al: ‘An assessment of market and policy barriers for demand response providing ancillary services in US electricity markets’, Energy Policy, 2013, 62, pp. 10311039.
    17. 17)
      • 12. Kazemi, M., Zareipour, H., Amjady, N., et al: ‘Operation scheduling of battery storage systems in joint energy and ancillary services markets’, IEEE Trans. Sustain. Energy, 2017, 8, (4), pp. 17261735.
    18. 18)
      • 30. Nwulu, N.I., Xia, X.: ‘Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs’, Energy, 2015, 91, pp. 404419.
    19. 19)
      • 22. Nikolic, D., Negnevitsky, M., De Groot, M.: ‘Fast demand response as spinning reserve in microgrids’. IET Mediterranean Conf. on Power Generation, Transmission, Distribution and Energy Conversion (MedPower 2016), Belgrade, 6 November 2016, pp. 15.
    20. 20)
      • 23. Borlase, S. (Ed.): ʻSmart grids: infrastructure, technology, and solutions' (CRC Press, Boca Raton, FL, 2016).
    21. 21)
      • 17. Juul, F., Negrete-Pincetic, M., MacDonald, J., et al: ‘Real-time scheduling of electric vehicles for ancillary services’. 2015 IEEE Power & Energy Society General Meeting, Denver, CO, 26 July 2015, pp. 15.
    22. 22)
      • 31. Nwulu, N.I., Xia, X.: ‘Multi-objective dynamic economic emission dispatch of electric power generation integrated with game theory based demand response programs’, Energy Convers. Manage., 2015, 89, pp. 963974.
    23. 23)
      • 8. Kottick, D., Blau, M., Edelstein, D.: Battery energy storage for frequency regulation in an island power system. IEEE Trans. Energy Convers., 1993, 8, (3), pp. 455459.
    24. 24)
      • 1. Europe, S.P.: ‘Global market outlook for solar power/2016–2020’ (Solar Power Europe, Bruxelles, Belgium, 2016), p. 32.
    25. 25)
      • 11. Thien, T., Schweer, D., vom Stein, D., et al: ‘Real-world operating strategy and sensitivity analysis of frequency containment reserve provision with battery energy storage systems in the German market’, J. Energy Storage, 2017, 13, pp. 143163.
    26. 26)
      • 10. Chen, Y., Keyser, M., Tackett, M.H., et al: ‘Incorporating short-term stored energy resource into Midwest ISO energy and ancillary service market’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 829838.
    27. 27)
      • 9. Fleer, J., Stenzel, P.: ‘Impact analysis of different operation strategies for battery energy storage systems providing primary control reserve’, J. Energy Storage, 2016, 8, pp. 320338.
    28. 28)
      • 32. Pal, R., Chelmis, C., Frincu, M., et al: ‘MATCH for the prosumer smart grid the algorithmics of real-time power balance’, IEEE Trans. Parallel Distrib. Syst., 2016, 27, (12), pp. 35323546.
    29. 29)
      • 7. Zhang, Y., Gatsis, N., Giannakis, G.B.: ‘Robust energy management for microgrids with high-penetration renewables’, IEEE Trans. Sustain. Energy, 2013, 4, (4), pp. 944953.
    30. 30)
      • 15. Alipour, M., Mohammadi-Ivatloo, B., Moradi-Dalvand, M., et al: ‘Stochastic scheduling of aggregators of plug-in electric vehicles for participation in energy and ancillary service markets’, Energy, 2017, 118, pp. 11681179.
    31. 31)
      • 4. Rejc, Ž.B., Čepin, M.: ‘Estimating the additional operating reserve in power systems with installed renewable energy sources’, Int. J. Electr. Power Energy Syst., 2014, 62, pp. 654664.
    32. 32)
      • 26. Zakariazadeh, A., Jadid, S., Siano, P.: ‘Economic-environmental energy and reserve scheduling of smart distribution systems: a multiobjective mathematical programming approach’, Energy Convers. Manage., 2014, 78, pp. 151164.
    33. 33)
      • 2. Ghofrani, M., Arabali, A., Etezadi-Amoli, M., et al: ‘Operating reserve requirements in a power system with dispersed wind generation'. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington DC, WA, 16 January 2012, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0659
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0659
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address