Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Combined control method for grid-side converter of doubly fed induction generator-based wind energy conversion systems

This study proposes a combined control method based on vector control (VC) and virtual flux direct power control (VFDPC) for grid-side converter of doubly fed induction generator (DFIG)-based wind energy conversion systems (WECSs). VC gives lower power ripple with a slower dynamic response, while VFDPC provides a faster dynamic response, but higher power ripple. So, an analogy between VC and VFDPC is proved first and then used to propose a combined control method that takes the advantages of VC and VFDPC in an integrated control system. In the combined control method, the grid currents are directly controlled using hysteresis controllers and optimal switching table. It has several advantages compared to VC including faster power/current dynamic response, robustness to grid filter parameter variation, lower computation, and simple implementation. On the other hand, its advantages compared to VFDPC include less current harmonic distortion, lower power ripple, and robustness to measurement noise. To demonstrate the effectiveness and robustness of the combined control method, simulation results on a 1.5 MW DFIG-based WECS are provided and compared with both VC and VFDPC under different steady-state and transient conditions. The simulation results verify the superiority of the proposed method over either VC or VFDPC.

References

    1. 1)
      • 5. Timbus, A., Liserre, M., Teodorescu, R., et al: ‘Evaluation of current controllers for distributed power generation systems’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 654664.
    2. 2)
      • 12. Malinowski, M., Kazmierkowski, M.P., Hansen, S., et al: ‘Virtual-flux-based direct power control of three-phase PWM rectifiers’, IEEE Trans. Ind. Appl., 2001, 37, (4), pp. 10191027.
    3. 3)
      • 17. Bouafia, A., Gaubert, J.P., Krim, F.: ‘Predictive direct power control of three-phase pulse width modulation (PWM) rectifier using space-vector modulation (SVM)’, IEEE Trans. Power Electron., 2010, 25, (1), pp. 228236.
    4. 4)
      • 14. Sato, A., Noguchi, T.: ‘Voltage-source PWM rectifier-inverter based on direct power control and its operation characteristics’, IEEE Trans. Power Electron., 2011, 26, (5), pp. 15591567.
    5. 5)
      • 18. Espi, J.M., Castello, J., García-Gil, R., et al: ‘An adaptive robust predictive current control for three phase grid-connected inverters’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 35373546.
    6. 6)
      • 2. Abad, G., Lopez, J., Rodriguez, M.A., et al: ‘Doubly fed induction machine modeling and control for wind energy generation applications’ (Wiley, Hoboken, NJ, 2011).
    7. 7)
      • 11. Zhi, D., Xu, L., Williams, B.W.: ‘Improved direct power control of grid-connected DC/AC converters’, IEEE Trans. Power Electron., 2009, 24, (5), pp. 12801292.
    8. 8)
      • 13. Vazquez, S., Sanchez, J.A., Carrasco, J.M., et al: ‘A model-based direct power control for three-phase power converters’, IEEE Trans. Ind. Electron., 2008, 55, (4), pp. 16471657.
    9. 9)
      • 26. Mohammadi, J., Afsharnia, S., Vaez-Zadeh, S., et al: ‘Improved fault ride through strategy for doubly fed induction generator based wind turbines under both symmetrical and asymmetrical grid faults’, IET Renew. Power Gener, 2016, 10, (8), pp. 11141122.
    10. 10)
      • 25. Mohammadi, J., Vaez-Zadeh, S., Afsharnia, S., et al: ‘A combined vector and direct power control for DFIG-based wind turbines’, IEEE Trans. Sustain. Energy, 2014, 5, (3), pp. 767775.
    11. 11)
      • 10. Serpa, L.A., Ponnaluri, S., Barbosa, P.M., et al: ‘A modified direct power control strategy allowing the connection of three-phase inverters to the grid through LCL filters’, IEEE Trans. Ind. Appl., 2007, 43, (5), pp. 13881400.
    12. 12)
      • 28. IEEE Std 1547.1: ‘IEEE standard for interconnecting distributed resources with electric power systems’, 2003, pp. 128.
    13. 13)
      • 21. Antoniewicz, P., Kazmierkowski, M.P.: ‘Virtual-flux-based predictive direct power control of AC/DC converters with online inductance estimation’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 43814390.
    14. 14)
      • 27. Rahman, K.M., Khan, M.R., Choudhury, M.A., et al: ‘Variable band hysteresis current controllers for PWM voltage source inverters’, IEEE Trans. Power Electron., 1997, 12, (6), pp. 964970.
    15. 15)
      • 15. Hu, J., Shang, L., He, Y., et al: ‘Direct active and reactive power regulation of grid-connected DC/AC converters using sliding mode control approach’, IEEE Trans. Power Electron., 2011, 26, (1), pp. 210222.
    16. 16)
      • 9. Vieira1, J.P.A., Nunes, M.V.A., Bezerra, U.H., et al: ‘Designing optimal controllers for doubly fed induction generators using a genetic algorithm’, IET Gener. Transm. Distrib, 2009, 3, (5), pp. 472484.
    17. 17)
      • 6. Li, S., Haskew, T.A., Hong, Y.K., et al: ‘Direct-current vector control of three-phase grid-connected rectifier–inverter’, Electr. Power Syst. Res., 2011, 81, pp. 357366.
    18. 18)
      • 22. Tao, Y.K., Wang, L., Wu, Q.H., et al: ‘Virtual-flux-based predictive direct power control of three-phase AC/DC converters’. 2014 IEEE PES Asia-Pacific Power and Energy Engineering Conf., Hong Kong, 2014, pp. 16.
    19. 19)
      • 23. Vaez-Zadeh, S., Jalali, E.: ‘Combined vector control and direct torque control method for high performance induction motor drives’, Energy Convers. Manage., 2007, 48, (12), pp. 30953101.
    20. 20)
      • 24. Karimi, H., Vaez-Zadeh, S., Rajaei-Salmasi, F.: ‘Combined vector and direct thrust control of linear induction motors with end effect compensation’, IEEE Trans. Energy Convers., 2016, 31, (1), pp. 196205.
    21. 21)
      • 1. Chen, Z., Guerrero, J.M., Blaabjerg, F.: ‘A review of the state of the art of power electronics for wind turbines’, IEEE Trans. Power Electron., 2009, 24, (8), pp. 18591875.
    22. 22)
      • 4. Yazdani, A., Iravani, R.: ‘Voltage-sourced converters in power systems: modeling, control, and applications’ (John Wiley & Sons, 2010).
    23. 23)
      • 8. Mohseni, M., Islam, S., Masoum, M.A.S.: ‘Enhanced hysteresis-based current regulators in vector control of DFIG wind turbines’, IEEE Trans. Power Electron., 2011, 26, (1), pp. 223234.
    24. 24)
      • 16. Patnaik, R.K., Dash, P.K.: ‘Fast adaptive back-stepping terminal sliding mode power control for both the rotor-side as well as grid-side converter of the doubly fed induction generator-based wind farms’, IET Renew. Power Gener., 2016, 10, (5), pp. 598610.
    25. 25)
      • 3. Blaabjerg, F., Teodorescu, R., Liserre, M., et al: ‘Overview of control and grid synchronization for distributed power generation systems’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 13981409.
    26. 26)
      • 19. Hu, J.: ‘Improved dead-beat predictive DPC strategy of grid-connected dc-ac converters with switching loss minimization and delay compensations’, IEEE Trans. Ind. Informat., 2013, 9, (2), pp. 728738.
    27. 27)
      • 7. Li, S., Haskew, T.A., Williams, K.A., et al: ‘Control of DFIG wind turbine with direct-current vector control configuration’, IEEE Trans. Sustain. Energy, 2012, 3, (1), pp. 111.
    28. 28)
      • 20. Hu, J., Zhu, Z.: ‘Improved voltage-vector sequences on dead-beat predictive direct power control of reversible three phase grid-connected voltage-source converters’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 254267.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0539
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0539
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address