Modelling and allocation of open-UPQC-integrated PV generation system to improve the energy efficiency and power quality of radial distribution networks

Modelling and allocation of open-UPQC-integrated PV generation system to improve the energy efficiency and power quality of radial distribution networks

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The study presents the modelling and allocation strategy for open unified power quality conditioner (UPQC-O) integrated photovoltaic (PV) generation system in radial distribution networks to improve the energy efficiency and PQ. An UPQC is a custom power device, which consists of series and shunt inverters. In UPQC-O, these inverters are placed in different locations in a network. There is a communication channel to share the information among these inverters to select the respective set point. Two models proposed are: (i) UPQC-O with battery and PV array (UPQC-O-WB) and (ii) UPQC-O with only PV array (UPQC-O-WOB). In UPQC-O-WB, the energy generated by PV array is stored during its operation hour to utilise it during peak hour. However, in UPQC-O-WOB, the energy generated by PV array is directly injected to the network. The proposed models are incorporated in the forward–backward sweep load flow to determine the operational parameters such as bus voltage. An optimisation problem is formulated to determine the optimal placement of UPQC-O with PV array in distribution networks. The objective function includes the investment and operational costs of inverters, battery and PV array, and the cost of energy loss. The particle swarm optimisation is used as the solution strategy.


    1. 1)
      • 1. Keane, A., Ochoa, L.F., Borges, C.L.T., et al: ‘State-of-the-art techniques and challenges ahead for distributed generation planning and optimization’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 14931502.
    2. 2)
      • 2. Georgilakis, P.S., Hatziargyriou, N.D.: ‘A review of power distribution planning in the modern power system era: models methods and future research’, Electr. Power Syst. Res., 2015, 121, pp. 89100.
    3. 3)
      • 3. Xiang, Y., Liu, J., Li, F., et al: ‘Optimal active distribution network planning: a review’, Electr. Power Compon. Syst., 2016, 44, (10), pp. 10751094.
    4. 4)
      • 4. Ganguly, S., Samajpati, D.: ‘Distributed generation allocation on radial distribution networks under uncertainties of load and generation using genetic algorithm’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 688697.
    5. 5)
      • 5. Evangelopoulos, V.A., Georgilakis, P.S.: ‘Optimal distributed generation placement under uncertainties based on point estimate method embedded genetic algorithm’, IET Gener. Transm. Distrib., 2014, 8, (3), pp. 389400.
    6. 6)
      • 6. Hemmati, R., Hooshmand, R., Taheri, N.: ‘Distribution network expansion planning and DG placement in the presence of uncertainties’, Electr. Power Energy Syst., 2015, 73, pp. 665673.
    7. 7)
      • 7. Borges, C.L.T., Martins, V.F.: ‘Multistage expansion planning for active distribution networks under demand and distributed generation uncertainties’, Int. J. Electr. Power Energy Syst., 2012, 36, (1), pp. 107116.
    8. 8)
      • 8. Zidan, A., Shaaban, M.F., El-Saadany, E.F.: ‘Long-term multi-objective distribution network planning by DG allocation and feeders’ reconfiguration’, Electr. Power Syst. Res., 2013, 105, pp. 95104.
    9. 9)
      • 9. Abbasi, F., Hosseini, S.M.: ‘Optimal DG allocation and sizing in presence of storage systems considering network configuration effects in distribution systems’, IET Gener. Transm. Distrib., 2016, 10, (3), pp. 617624.
    10. 10)
      • 10. Jahromi, M.E., Ehsan, M., Meyabadi, A.F.: ‘A dynamic fuzzy interactive approach for DG expansion planning’, Int. J. Electr. Power Energy Syst., 2012, 43, pp. 10941105.
    11. 11)
      • 11. Ganguly, S., Sahoo, N.C., Das, D.: ‘Multi-objective particle swarm optimization based on fuzzy-Pareto-dominance for fuzzy-based planning of electrical distribution systems incorporating distributed generation’, Fuzzy Sets Syst., 2013, 213, pp. 4773.
    12. 12)
      • 12. Atwa, Y.M., El-Saadany, E.F.: ‘Probabilistic approach for optimal allocation of wind-based distributed generation in distribution systems’, IET Renew. Power Gener., 2011, 5, pp. 7988.
    13. 13)
      • 13. Ghosh, A., Ledwitch, G.: ‘Power quality enhancement using custom power devices’ (Springer, New York, 2009).
    14. 14)
      • 14. Khadkikar, V.: ‘Enhancing electric power quality using UPQC: a comprehensive overview’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 22842297.
    15. 15)
      • 15. Fujita, H., Akagi, H.: ‘The unified power quality conditioner: the integration of series- and shunt-active filters’, IEEE Trans. Power Electron., 1998, 13, (2), pp. 315322.
    16. 16)
      • 16. Khadkikar, V., Chandra, A.: ‘UPQC-S: a novel concept of simultaneous voltage sag/swell and load reactive power compensations utilizing series inverter of UPQC’, IEEE Trans. Power Electron., 2011, 26, (9), pp. 24142425.
    17. 17)
      • 17. Khadkikar, V., Chandra, A.: ‘A novel structure for three-phase four-wire distribution system utilizing unified power quality conditioner (UPQC)’, IEEE Trans. Ind. Appl., 2009, 45, (5), pp. 18971902.
    18. 18)
      • 18. Jindal, A.K., Ghosh, A., Joshi, A.: ‘Interline unified power quality conditioner’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 364372.
    19. 19)
      • 19. Brenna, M., Faranda, R., Tironi, E.: ‘A new proposal for power quality and custom power improvement: open UPQC’, IEEE Trans. Power Deliv., 2009, 24, (4), pp. 21072116.
    20. 20)
      • 20. Khadkikar, V., Chandra, A.: ‘A new control philosophy for a unified power quality conditioner (UPQC) to coordinate load-reactive power demand between shunt and series inverters’, IEEE Trans. Power Deliv., 2008, 23, (4), pp. 25222534.
    21. 21)
      • 21. Karanki, S.B., Mishra, M.K., Kumar, B.K.: ‘Particle swarm optimization-based feedback controller for unified power-quality conditioner’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 28142824.
    22. 22)
      • 22. Han, B., Bae, B., Kim, H., et al: ‘Combined operation of unified power-quality conditioner with distributed generation’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 330338.
    23. 23)
      • 23. Jayanti, N.G., Basu, M., Conlon, M.F., et al: ‘Rating requirements of the unified power quality conditioner to integrate the fixed speed induction generator-type wind generation to the grid’, IET Renew. Power Gener., 2009, 3, (2), pp. 133143.
    24. 24)
      • 24. Sarker, J., Goswami, S.K.: ‘Optimal location of unified power quality conditioner in distribution system for power quality improvement’, Int. J. Power Energy Syst., 2016, 83, pp. 309324.
    25. 25)
      • 25. Ganguly, S.: ‘Impact of unified power quality conditioner allocation on line loading losses, and voltage stability of radial distribution systems’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 18591867.
    26. 26)
      • 26. Ganguly, S.: ‘Multi-objective planning for reactive power compensation of radial distribution networks with unified power quality conditioner allocation using particle swarm optimization’, IEEE Trans. Power Syst., 2014, 29, (4), pp. 18011810.
    27. 27)
      • 27. Accetta, G., Antona, G.D., Giustina, D.D., et al: ‘Power quality improvement in LV smart grid by using the open UPQC device’. Int. Conf. Renewable Energies and Power Quality, Bilbao, Spain, March 2013, pp. 540545.
    28. 28)
      • 28. D'Antona, G., Giustina, D.D., Faranda, R., et al: ‘Open UPQC power quality manager within distributed generation systems’. Proc. IEEE Tenth Int. Symp. SDEMPED, Guarda, Portugal, September 2015, pp. 501507.
    29. 29)
      • 29. Teke, A., Meral, M.E., Cuma, M.U., et al: ‘Open unified power quality conditioner with control based on enhanced phase locked loop’, IET Gener. Trans. Distrib., 2013, 7, (3), pp. 254264.
    30. 30)
      • 30. Kotturu, J., Agarwal, P.: ‘Comparative performance analysis of UPQC and open UPQC’. Annual IEEE India Conf., New Delhi, India, December 2015.
    31. 31)
      • 31. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. Proc. IEEE Int. Conf. Neural Networks, Perth, WA, Australia, November 1995, pp. 19421948.
    32. 32)
      • 32. Shi, Y., Eberhart, R.: ‘A modified particle swarm optimizer’. Proc. IEEE Int. Conf. Evolutionary Computation, Anchorage, USA, May 1998, pp. 6973.
    33. 33)
      • 33. Heydari, H., Moghadasi, A.H.: ‘Optimization scheme in combinatorial UPQC and SFCL using normalized simulated annealing’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 14891498.
    34. 34)
      • 34. Savier, J.S., Das, D.: ‘Impact of network reconfiguration on loss allocation of radial distribution systems’, IEEE Trans. Power Deliv., 2007, 22, (4), pp. 24732480.
    35. 35)
      • 35. Baran, M.E., Wu, F.F.: ‘Network reconfiguration in distribution systems for loss reduction and load balancing’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 14011407.
    36. 36)
      • 36. Manuel, W.G.: ‘Energy storage study 2014’. California Energy Commission Report, 2014, pp. 128.
    37. 37)
      • 37. Distributed generation renewable energy estimate of costs’, Technical Report, NREL, USA, February 2016. Available at, accessed August 2017.
    38. 38)
      • 38. Lakshmi, S., Ganguly, S.: ‘Transition of power distribution system planning from passive to active networks: a state-of-the-art review and a new proposal’, in De, S., Bandyopadhyay, S., Assadi, M., et al (Eds.): ‘Sustainable energy technology and policies: a transformational journey’, vol. 1, (Springer, New York, 2018), pp. 87117, doi: 10.1007/978-981-10-7188-1.
    39. 39)
      • 39. Jazebi, S., Hosseinian, S.H., Vahidi, B.: ‘DSTATCOM allocation in distribution networks considering reconfiguration using differential evolution algorithm’, Energy Convers. Manage., 2011, 52, pp. 27772783.
    40. 40)
      • 40. Thukaram, D., Khincha, H.P., Vijaynarasimha, H.P.: ‘Artificial neural network and support vector machine approach for locating faults in radial distribution systems’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 710721.

Related content

This is a required field
Please enter a valid email address