http://iet.metastore.ingenta.com
1887

Energy curtailment of DC series–parallel connected offshore wind farms

Energy curtailment of DC series–parallel connected offshore wind farms

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents an analysis of the energy curtailment caused by the DC series–parallel collection systems of HVDC connected offshore wind farms. Wind speed differences between the series connected wind turbines cause unequal voltages at the DC output of the wind turbines. This can lead to unacceptable over-voltage or under-voltage conditions. The over-voltage and under-voltage conditions on the turbine DC outputs can be avoided by curtailing the power outputs of the wind turbines, which will result in loss of wind power. The annual energy curtailment due to the over-voltage limits of turbine DC–DC converters is analysed for a 200 MW DC series–parallel wind farm. The impact of wake effects on the energy curtailment losses is quantified and demonstrated with a case study.

References

    1. 1)
      • 1. Liserre, M., Cárdenas, R., Molinas, M., et al: ‘Overview of multi-MW wind turbines and wind parks’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 10811095.
    2. 2)
      • 2. Gomis-Bellmunt, O., Junyent-Ferré, A., Sumper, A., et al: ‘Control of a wind farm based on synchronous generators with a central HVDC-VSC converter’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 16321640.
    3. 3)
      • 3. Jovcic, D., Strachan, N.: ‘Offshore wind farm with centralised power conversion and DC interconnection’, IET Gener. Transm. Distrib., 2009, 3, (6), pp. 586595.
    4. 4)
      • 4. Robinson, J., Jovcic, D., Joós, G.: ‘Analysis and design of an offshore wind farm using a MV DC grid’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 21642173.
    5. 5)
      • 5. Meyer, C., Hoing, M., Peterson, A., et al: ‘Control and design of DC grids for offshore wind farms’, IEEE Trans. Ind. Appl., 2007, 43, (6), pp. 14751482.
    6. 6)
      • 6. Lundberg, S.: ‘Wind farm configurations and energy efficiency studies – series DC vs. AC layouts’. PhD Thesis, Chalmers University of Technology, 2006.
    7. 7)
      • 7. Veilleux, E., Lehn, P.W.: ‘Interconnection of direct-drive wind turbines using a series-connected dc grid’, IEEE Trans. Sustain. Energy, 2014, 5, (1), pp. 139147.
    8. 8)
      • 8. Tatsuta, F., Nishikata, S.: ‘Dynamic performance analysis of a wind turbine generating system with series connected wind generators and bypass diodes using a current source thyristor inverter’. Proc. Int. Power Electronics Conf., Sapporo, Japan, 2010, pp. 18301836.
    9. 9)
      • 9. Bahirat, H.J., Kjolle, G.H., Mork, B.A., et al: ‘Reliability assessment of DC wind farms’. Proc. IEEE Power and Energy Society General Meeting, 2012, pp. 17.
    10. 10)
      • 10. Holtsmark, N., Bahirat, H.J., Molinas, M., et al: ‘An All-DC offshore wind farm with series-connectedturbines: An alternative to the classical parallel AC model?’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 24202428.
    11. 11)
      • 11. Nishikata, S., Tatsuta, F.: ‘A new interconnecting method for wind turbine/generators in a wind farm’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 468475.
    12. 12)
      • 12. Popat, M., Wu, B., Liu, F., et al: ‘Coordinated control of cascaded current-source converter based offshore wind farm’, IEEE Trans. Sustain. Energy, 2012, 3, (3), pp. 557565.
    13. 13)
      • 13. Garcés, A., Molinas, M.: ‘Coordinated control of series connected offshore wind park based on matrix converters’, Wind Energy, 2012, 15, (6), pp. 827845.
    14. 14)
      • 14. Hou, P., Hu, W., Soltani, M., et al: ‘Optimized placement of wind turbines in large-scale offshore wind farm using particle swarm optimization algorithm’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 12721282.
    15. 15)
      • 15. Bak, C., Zahle, F., Bitsche, R., et al: ‘Description of the DTU 10 MW reference wind turbine’, DTU Wind Energy, 2013, Fredericia, Denmark.
    16. 16)
      • 16. Frandsen, S., Barthelmie, R., Pryor, S., et al: ‘Analytical modelling of wind speed deficit in large offshore wind Farms’, Wind Energy, 2006, 9, (1-2), pp. 3953.
    17. 17)
      • 17. Barthelmie, R.J., Larsen, G.C., Frandsen, S.T., et al: ‘Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar’, J. Atmos. Ocean. Technol., 2005, 23, (7), pp. 888901.
    18. 18)
      • 18. Jensen, N.O.: ‘A note on wind generator interaction’. Tech. Rep., RISØ-M-24111983, Risø National Laboratory, Roskilde, Denmark.
    19. 19)
      • 19. Neumann, T., Riedel, V.: ‘Fino 1 platform: update of the offshore wind statistics’, DEWI Mag., 2006, 2006, (28), p. 60.
    20. 20)
      • 20. Alexander Parker, M., Anaya-Lara, O.: ‘Cost and losses associated with offshore wind farm collection networks which centralise the turbine power electronic converters’, IET Renew. Power Gener., 2013, 7, (4), pp. 390400.
    21. 21)
      • 21. Guo, J., Li, H., Lakshmanan, P., et al: ‘Energy curtailment analysis of offshore wind farms with DC series-parallel collection systems’, DRPT-2015, Changsha, China, 2015.
    22. 22)
      • 22. Chuangpishit, S., Tabesh, A.: ‘Topology design for collector systems of offshore wind farms with pure DC power systems’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 320328.
    23. 23)
      • 23. Lakshmanan, P., Liang, J., Jenkins, N.: ‘Assessment of collection systems for HVDC connected offshore wind farms’, Electr. Power Syst. Res., 2015, 129, pp. 7582.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0457
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0457
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address