Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Energy curtailment of DC series–parallel connected offshore wind farms

This study presents an analysis of the energy curtailment caused by the DC series–parallel collection systems of HVDC connected offshore wind farms. Wind speed differences between the series connected wind turbines cause unequal voltages at the DC output of the wind turbines. This can lead to unacceptable over-voltage or under-voltage conditions. The over-voltage and under-voltage conditions on the turbine DC outputs can be avoided by curtailing the power outputs of the wind turbines, which will result in loss of wind power. The annual energy curtailment due to the over-voltage limits of turbine DC–DC converters is analysed for a 200 MW DC series–parallel wind farm. The impact of wake effects on the energy curtailment losses is quantified and demonstrated with a case study.

References

    1. 1)
      • 11. Nishikata, S., Tatsuta, F.: ‘A new interconnecting method for wind turbine/generators in a wind farm’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 468475.
    2. 2)
      • 6. Lundberg, S.: ‘Wind farm configurations and energy efficiency studies – series DC vs. AC layouts’. PhD Thesis, Chalmers University of Technology, 2006.
    3. 3)
      • 9. Bahirat, H.J., Kjolle, G.H., Mork, B.A., et al: ‘Reliability assessment of DC wind farms’. Proc. IEEE Power and Energy Society General Meeting, 2012, pp. 17.
    4. 4)
      • 10. Holtsmark, N., Bahirat, H.J., Molinas, M., et al: ‘An All-DC offshore wind farm with series-connectedturbines: An alternative to the classical parallel AC model?’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 24202428.
    5. 5)
      • 5. Meyer, C., Hoing, M., Peterson, A., et al: ‘Control and design of DC grids for offshore wind farms’, IEEE Trans. Ind. Appl., 2007, 43, (6), pp. 14751482.
    6. 6)
      • 12. Popat, M., Wu, B., Liu, F., et al: ‘Coordinated control of cascaded current-source converter based offshore wind farm’, IEEE Trans. Sustain. Energy, 2012, 3, (3), pp. 557565.
    7. 7)
      • 1. Liserre, M., Cárdenas, R., Molinas, M., et al: ‘Overview of multi-MW wind turbines and wind parks’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 10811095.
    8. 8)
      • 15. Bak, C., Zahle, F., Bitsche, R., et al: ‘Description of the DTU 10 MW reference wind turbine’, DTU Wind Energy, 2013, Fredericia, Denmark.
    9. 9)
      • 16. Frandsen, S., Barthelmie, R., Pryor, S., et al: ‘Analytical modelling of wind speed deficit in large offshore wind Farms’, Wind Energy, 2006, 9, (1-2), pp. 3953.
    10. 10)
      • 18. Jensen, N.O.: ‘A note on wind generator interaction’. Tech. Rep., RISØ-M-24111983, Risø National Laboratory, Roskilde, Denmark.
    11. 11)
      • 2. Gomis-Bellmunt, O., Junyent-Ferré, A., Sumper, A., et al: ‘Control of a wind farm based on synchronous generators with a central HVDC-VSC converter’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 16321640.
    12. 12)
      • 21. Guo, J., Li, H., Lakshmanan, P., et al: ‘Energy curtailment analysis of offshore wind farms with DC series-parallel collection systems’, DRPT-2015, Changsha, China, 2015.
    13. 13)
      • 14. Hou, P., Hu, W., Soltani, M., et al: ‘Optimized placement of wind turbines in large-scale offshore wind farm using particle swarm optimization algorithm’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 12721282.
    14. 14)
      • 8. Tatsuta, F., Nishikata, S.: ‘Dynamic performance analysis of a wind turbine generating system with series connected wind generators and bypass diodes using a current source thyristor inverter’. Proc. Int. Power Electronics Conf., Sapporo, Japan, 2010, pp. 18301836.
    15. 15)
      • 13. Garcés, A., Molinas, M.: ‘Coordinated control of series connected offshore wind park based on matrix converters’, Wind Energy, 2012, 15, (6), pp. 827845.
    16. 16)
      • 4. Robinson, J., Jovcic, D., Joós, G.: ‘Analysis and design of an offshore wind farm using a MV DC grid’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 21642173.
    17. 17)
      • 20. Alexander Parker, M., Anaya-Lara, O.: ‘Cost and losses associated with offshore wind farm collection networks which centralise the turbine power electronic converters’, IET Renew. Power Gener., 2013, 7, (4), pp. 390400.
    18. 18)
      • 22. Chuangpishit, S., Tabesh, A.: ‘Topology design for collector systems of offshore wind farms with pure DC power systems’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 320328.
    19. 19)
      • 23. Lakshmanan, P., Liang, J., Jenkins, N.: ‘Assessment of collection systems for HVDC connected offshore wind farms’, Electr. Power Syst. Res., 2015, 129, pp. 7582.
    20. 20)
      • 3. Jovcic, D., Strachan, N.: ‘Offshore wind farm with centralised power conversion and DC interconnection’, IET Gener. Transm. Distrib., 2009, 3, (6), pp. 586595.
    21. 21)
      • 19. Neumann, T., Riedel, V.: ‘Fino 1 platform: update of the offshore wind statistics’, DEWI Mag., 2006, 2006, (28), p. 60.
    22. 22)
      • 17. Barthelmie, R.J., Larsen, G.C., Frandsen, S.T., et al: ‘Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar’, J. Atmos. Ocean. Technol., 2005, 23, (7), pp. 888901.
    23. 23)
      • 7. Veilleux, E., Lehn, P.W.: ‘Interconnection of direct-drive wind turbines using a series-connected dc grid’, IEEE Trans. Sustain. Energy, 2014, 5, (1), pp. 139147.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0457
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0457
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address