Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Improving combined solar power forecasts using estimated ramp rates: data-driven post-processing approach

Several forecasting models are combined together to mitigate the uncertainty associated with the solar power generation resource and improve the power generation forecasts. The common ensemble approach in wind and solar power forecasting is the blending of meteorological data from several sources. In this study, the present and the past solar power forecasts, as well as the associated meteorological data, are incorporated into an ensemble learning tool. Since forecasts based on numerical weather prediction systems are more valuable in horizons longer than 6 h, the proposed approach includes the simple persistence model of hour-ahead forecasts along with the different models of day-ahead forecasts so that the combined forecasts become hour-ahead solar power forecasts. In addition, the proposed approach combines the ramp rates of the forecasts to enhance the ensemble learning. Furthermore, the approach improves the ensemble learning by using two loss functions – the first function to minimise errors of the forecasts, and the second to minimise errors of the ramp rates of the forecasts. The performance of the combined forecasts is evaluated over the entire year and compared with other techniques.

References

    1. 1)
      • 31. Hsu, C.-W., Chang, C.-C., Lin, C.-J.: ‘A practical guide to support vector classification’, BJU Int., 2008, 101, (1), pp. 13961400.
    2. 2)
      • 21. Reno, M.J., Hansen, C.W.: ‘Identification of periods of clear sky irradiance in time series of GHI measurements’, Renew. Energy, 2016, 90, pp. 520531.
    3. 3)
      • 19. Florita, A., Hodge, B.-M., Orwig, K.: ‘Identifying wind and solar ramping events’. 2013 IEEE Green Technologies Conf., Denver, 2013, pp. 147152.
    4. 4)
      • 15. Lu, S., Youngdeok, H., Khabibrakhmanov, I., et al: ‘Machine learning based multi-physical-model blending for enhancing renewable energy forecast - improvement via situation dependent error correction’. 2015 European Control Conf., Linz, 2015, pp. 283290.
    5. 5)
      • 25. Breiman, L.: ‘Random forests’, Mach. Learn., 2001, 45, (1), pp. 532.
    6. 6)
      • 30. Hong, T.: ‘Short term electric load forecasting’ (North Carolina State University, Raleigh, 2010).
    7. 7)
      • 29. Abuella, M., Chowdhury, B.: ‘Random forest ensemble of support vector regression models for solar power forecasting’. 2017 IEEE Power Energy Society Innovative Smart Grid Technologies Conf. (ISGT), Arlington, April 2017, pp. 15.
    8. 8)
      • 32. Pedro, H.T., Coimbra, C.F.: ‘Assessment of forecasting techniques for solar power production with no exogenous inputs’, Sol. Energy, 2012, 86, (7), pp. 20172028.
    9. 9)
      • 34. Inman, R. H., Pedro, H. T., Coimbra, C. F.: ‘Solar forecasting methods for renewable energy integration’, Prog. Energy Combust. Sci., 2013, 39, (6), pp. 535576.
    10. 10)
      • 16. Catalão, J.P.S.: ‘Smart and sustainable power systems: operations, planning, and economics of insular electricity grids’ (CRC Press, Boca Raton, 2015).
    11. 11)
      • 12. Sperati, S., Alessandrini, S., Delle Monache, L.: ‘An application of the ECMWF ensemble prediction system for short-term solar power forecasting’, Sol. Energy, 2016, 133, (August), pp. 437450.
    12. 12)
      • 33. Mathiesen, P., Kleissl, J.: ‘Evaluation of numerical weather prediction for intraday solar forecasting in the continental United States’, Sol. Energy, 2011, 85, (5), pp. 967977.
    13. 13)
      • 22. Kleissl, J.: ‘Solar energy forecasting and resource assessment’ (Elsevier, Waltham, 2013).
    14. 14)
      • 26. Hossain, M.R., Oo, A.M.T., Ali, A.: ‘The effectiveness of feature selection method in solar power prediction’, J. Renew. Energy, 2013, 2013, pp. 19.
    15. 15)
      • 8. Zamo, M., Mestre, O., Arbogast, P., et al: ‘A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production. Part I: deterministic forecast of hourly production’, Sol. Energy, 2014, 105, pp. 804816.
    16. 16)
      • 17. Haupt, S., Kosovic, B.: ‘Variable generation power forecasting as a big data problem’, IEEE Trans. Sustain. Energy, 2016, 8, (2), pp. 725732.
    17. 17)
      • 13. Pierro, M., Bucci, F., Cornaro, C., et al: ‘Model output statistics cascade to improve day ahead solar irradiance forecast’, Sol. Energy, 2015, 117, pp. 99113.
    18. 18)
      • 1. Morales, J.M., Conejo, A.J., Madsen, H., et al: ‘Integrating renewables in electricity markets – operational problems, vol. 205 of international series in operations research & management Science’ (Springer US, Boston, MA, 2014).
    19. 19)
      • 2. Tuohy, A., Zack, J., Haupt, S.E., et al: ‘Solar forecasting: methods, challenges, and performance’, IEEE Power Energy Mag., 2015, 13, (6), pp. 5059.
    20. 20)
      • 7. Liu, J.: ‘Combining sister load forecasts’, 2015.
    21. 21)
      • 28. Abuella, M., Chowdhury, B.: ‘Solar power forecasting using artificial neural networks’. North American Power Symp. (NAPS), Charlotte, NC, USA, 2015.
    22. 22)
      • 27. Abuella, M., Chowdhury, B.: ‘Solar power probabilistic forecasting by using multiple linear regression analysis’. IEEE Southeastcon Proc., Fort Lauderdale, 2015.
    23. 23)
      • 5. Aguiar, L.M., Pereira, B., Lauret, P., et al: ‘Combining solar irradiance measurements, satellite-derived data and a numerical weather prediction model to improve intra-day solar forecasting’, Renew. Energy, 2016, 97, pp. 599610.
    24. 24)
      • 4. Voyant, C., Muselli, M., Paoli, C., et al: ‘Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation’, Energy, 2012, 39, (1), pp. 341355.
    25. 25)
      • 14. Cheung, W., Zhang, J., Florita, A., et al: ‘Ensemble solar forecasting statistical quantification and sensitivity analysis’. 5th Solar Integration Workshop, Brussels, vol. 1, 2015.
    26. 26)
      • 6. Marquez, R., Pedro, H.T.C., Coimbra, C.F.M.: ‘Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs’, Sol. Energy, 2013, 92, pp. 176188.
    27. 27)
      • 23. Bacher, P., Madsen, H., Nielsen, H. A.: ‘Online short-term solar power forecasting’, Sol. Energy, 2009, 83, (10), pp. 17721783.
    28. 28)
      • 24. Hastie, T., Tibshirani, R., Friedman, J., et al: ‘The elements of statistical learning’ (Springer-Verlag, New York, 2009, 2nd edn.).
    29. 29)
      • 10. Mohammed, A.A., Yaqub, W., Aung, Z.: ‘Probabilistic forecasting of solar power: an ensemble learning approach’, in Neves Silva, R., Jain, L.C., Howlett, R.J. (Eds.): ‘Intelligent decision technologies’ (Springer, Cham, 2015), pp. 449458.
    30. 30)
      • 3. Hong, T., Pinson, P., Fan, S., et al: ‘Probabilistic energy forecasting: global energy forecasting competition 2014 and beyond’, Int. J. Forecast., 2016, 32, (3), pp. 896913.
    31. 31)
      • 18. Chu, Y., Pedro, H.T.C., Li, M., et al: ‘Real-time forecasting of solar irradiance ramps with smart image processing’, Sol. Energy, 2015, 114, pp. 91104.
    32. 32)
      • 11. Pierro, M., Bucci, F., De Felice, M., et al: ‘Multi-Model ensemble for day ahead prediction of photovoltaic power generation’, Sol. Energy, 2016, 134, pp. 132146.
    33. 33)
      • 35. Antonanzas, J., Osorio, N., Escobar, R., et al: ‘Review of photovoltaic power forecasting’, 2016, 136, pp. 78111.
    34. 34)
      • 9. Huang, J., Troccoli, A., Coppin, P.: ‘An analytical comparison of four approaches to modelling the daily variability of solar irradiance using meteorological records’, Renew. Energy, 2014, 72, pp. 195202.
    35. 35)
      • 20. Hirata, Y., Aihara, K.: ‘Predicting ramps by integrating different sorts of information’, Eur. Phys. J. Spec. Top., 2016, 225, (3), pp. 513525.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0447
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0447
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address