Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fault-tolerant finite control set-model predictive control for marine current turbine applications

This study deals with a fault-tolerant control (FTC) strategy for a marine current energy conversion system based on a five-phase permanent magnet synchronous generator. First, a finite control set-model predictive control is adopted to highlight the advantages of this kind of generator in normal mode. The speed tracking performance is evaluated when the system operates under swell effect. Second, its fault tolerance is evaluated under various open-circuit fault conditions. In this case, the reference currents are reconfigured online to achieve the reference torque while minimising the copper losses. Extensive simulations, based on real-tidal speed data measured at the Raz-de-Sein site in Bretagne, France, are carried out for the validation of the proposed FTC strategy.

References

    1. 1)
      • 10. Amirat, Y., Benbouzid, M.E.H., Al-Ahmar, E., et al: ‘A brief status on condition monitoring and fault diagnosis in wind energy conversion systems’, Renew. Sustain. Energy Rev., 2009, 13, (9), pp. 26292636.
    2. 2)
      • 7. Mekri, F., Benelghali, S., Benbouzid, M.E.H.: ‘Fault-tolerant control performance comparison of three- and five-phase PMSG for marine current turbine applications’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 425433.
    3. 3)
      • 12. Baudart, F., Dehez, B., Matagne, E., et al: ‘Torque control strategy of polyphase permanent-magnet synchronous machines with minimal controller reconfiguration under open-circuit fault of one phase’, IEEE Trans. Ind. Electron., 2012, 59, (6), pp. 26322644.
    4. 4)
      • 4. Benelghali, S., Benbouzid, M.E.H., Charpentier, J.F.: ‘Generator systems for marine current turbine applications: a comparative study’, IEEE J. Ocean. Eng., 2012, 37, (3), pp. 554563.
    5. 5)
      • 11. Fall, O., Nguyen, N.K., Charpentier, J.F., et al: ‘Variable speed control of a 5-phase permanent magnet synchronous generator including voltage and current limits in healthy and open-circuited modes’, Electr. Power Syst. Res., 2016, 140, pp. 507516.
    6. 6)
      • 18. Rodriguez, J., Kazmierkowski, M.P., Espinoza, J.R., et al: ‘State of the art of finite control set model predictive control in power electronics’, IEEE Trans. Ind. Inf., 2013, 9, (2), pp. 10031016.
    7. 7)
      • 2. Zhou, Z., Scuiller, F., Charpentier, J.F., et al: ‘Power smoothing control in a grid-connected marine current turbine system for compensating swell effect’, IEEE Trans. Sustain. Energy, 2013, 4, (3), pp. 816826.
    8. 8)
      • 21. Lim, C.S., Levi, E., Jones, M., et al: ‘FCS-MPC-based current control of a five-phase induction motor and its comparison with PI-PWM control’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 149163.
    9. 9)
      • 22. Service hydrographique et océanographique de la marine. Available at http://www.shom.fr, accessed 1 September 2016.
    10. 10)
      • 9. Zhou, Z., Benbouzid, M.E.H., Charpentier, J.F., et al: ‘Developments in large marine current turbine technologies – a review’, Renew. Sustain. Energy Rev., 2017, 77, pp. 852858.
    11. 11)
      • 14. Dwari, S., Parsa, L.: ‘Fault-tolerant control of five-phase permanent-magnet motors with trapezoidal back EMF’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 476485.
    12. 12)
      • 8. Djebarri, S., Charpentier, J.F., Scuiller, F., et al: ‘Design and performance analysis of double stator axial flux PM generator for rim driven marine current turbines’, IEEE J. Ocean. Eng., 2016, 41, (1), pp. 5066.
    13. 13)
      • 19. Preindl, M., Bolognani, S.: ‘Model predictive direct torque control with finite control set for PMSM drive systems, part 1: maximum torque per ampere operation’, IEEE Trans. Ind. Inf., 2013, 9, (4), pp. 19121921.
    14. 14)
      • 20. Preindl, M., Bolognani, S.: ‘Model predictive direct speed control with finite control set of PMSM drive systems’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 10071015.
    15. 15)
      • 13. Kestelyn, X., Semail, E.: ‘A vectorial approach for generation of optimal current references for multiphase permanent-magnet synchronous machines in real time’, IEEE Trans. Ind. Electron., 2011, 58, (11), pp. 50575065.
    16. 16)
      • 23. Pham, H.T., Bourgeot, J.M., Benbouzid, M.E.H.: ‘Fault-tolerant model predictive control of 5-phase PMSG under an open-circuit phase fault condition for marine current applications’. Proc. 2016 IECON, Florence (Italy), October 2016, pp. 57605765.
    17. 17)
      • 16. Kestelyn, X., Gomozov, O., Buire, J., et al: ‘Investigation on model predictive control of a five-phase permanent magnet synchronous machine under voltage and current limits’. InProc. IEEE ICIT, Seville (Spain), March 2015, pp. 22812287.
    18. 18)
      • 15. Sari, B., Dieng, A., Benkhoris, M.F., et al: ‘A new robust torque control of a five phase permanent magnet synchronous machine’. Proc. EPE-PEMC 2012 ECCE Europe, September 2012, pp. LS1c.5-1LS1c.5-6.
    19. 19)
      • 5. Zhou, Z., Scuiller, F., Charpentier, J.F., et al: ‘Power control of a nonpitchable PMSG-based marine current turbine at overrated current speed with flux-weakening strategy’, IEEE J. Ocean. Eng., 2015, 40, (3), pp. 536545.
    20. 20)
      • 3. Chen, H., At-Ahmed, N., Machmoum, M., et al: ‘Modeling and vector control of marine current energy conversion system based on doubly salient permanent magnet generator’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 409418.
    21. 21)
      • 6. Jahromi, M.J., Maswood, A.I., Tseng, K.J.: ‘Design and evaluation of a new converter control strategy for near-shore tidal turbines’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 56485659.
    22. 22)
      • 1. REN21 Network: Renewables 2016, global status report. Available at http://www.ren21.net/wp-content/uploads/2016/10/REN21_GSR2016_FullReport_en_11.pdf, accessed 1 June 2017.
    23. 23)
      • 17. Cortes, P., Kazmierkowski, M.P., Kennel, R.M., et al: ‘Predictive control in power electronics and drives’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 43124324.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0431
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0431
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address