Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Cluster analysis of wind turbine alarms for characterising and classifying stoppages

Turbine alarm systems can give useful information to remote technicians on the cause of a fault or stoppage. However, alarms are generally generated at much too high a rate to gain meaningful insight from on their own, so generally require extensive domain knowledge to interpret. By grouping together commonly occurring alarm sequences, the burden of analysis can be reduced. Instead of analysing many individual alarms that occur during a stoppage, the stoppage can be linked to a commonly occurring sequence of alarms. Hence, maintenance technicians can be given information about the shared characteristics or root causes of stoppages where that particular alarm sequence appeared in the past. This research presents a methodology to identify relevant alarms from specific turbine assemblies and group together similar alarm sequences as they appear during stoppages. Batches of sequences associated with 456 different stoppages are created, and features are extracted from these batches representing the order the alarms appeared in. The batches are grouped together using clustering techniques, and evaluated using silhouette analysis and manual inspection. Results show that almost half of all stoppages can be attributed to one of 15 different clusters of alarm sequences.

References

    1. 1)
      • 2. Tchakoua, P., Wamkeue, R., Ouhrouche, M.: ‘Wind turbine condition monitoring: state-of-the-art review, new trends, and future challenges’, Energies, 2014, 7, (4), pp. 25952630.
    2. 2)
      • 22. Wilkinson, M., Hendriks, B., Spinato, F., et al: ‘Measuring wind turbine reliability – results of the reliawind project’. European Wind Energy Association Conf., 2011, pp. 18.
    3. 3)
      • 17. Kaidis, C., Uzunoglu, B., Amoiralis, F.: ‘Wind turbine reliability estimation for different assemblies and failure severity categories’, IET Renew. Power Gener., 2015, 9, (8), pp. 892899.
    4. 4)
      • 14. Yang, W., Court, R., Jiang, J.: ‘Wind turbine condition monitoring by the approach of SCADA data analysis’, Renew. Energy, 2013, 53, pp. 365376.
    5. 5)
      • 20. Reder, M., Gonzalez, E., Melero, J.J.: ‘Wind turbine failure analysis – tackling current problems in failure data analysis’, J. Phys. Conf. Ser., 2016, 753, p. 072027.
    6. 6)
      • 4. Peters, V.A., Ogilvie, A.B., Bond, C.R.: ‘Continuous reliability enhancement for wind (CREW) database: wind plant reliability benchmark’, 2012. September.
    7. 7)
      • 7. Faulstich, S., Hahn, B., Tavner, P.J.: ‘Wind turbine downtime and its importance for offshore deployment’, Wind Energy, 2011, 14, (3), pp. 327337.
    8. 8)
      • 25. Hastie, T., Tibshirani, R., Friedman, J.: ‘The elements of statistical learning’, in Casella, G., Fienberg, S., Olkin, I. (Eds.): ‘Of Springer series in statistics’ (Springer New York, New York, NY, 2009), 1, pp. 501520.
    9. 9)
      • 24. James, G., Witten, D., Hastie, T., et al: ‘An introduction to statistical learning’, in ‘Of Springer texts in statistics’ (Springer New York, New York, NY, 2013), 103, pp. 2628.
    10. 10)
      • 16. Chen, B., Matthews, P.C., Tavner, P.J.: ‘Wind turbine pitch faults prognosis using a-priori knowledge-based ANFIS’, Expert Syst. Appl., 2013, 40, (17), pp. 68636876.
    11. 11)
      • 3. Walford, C.: ‘Wind turbine reliability: understanding and minimizing wind turbine operation and maintenance costs’, (Sandia National Lab., Albuquerque, NM, 2016), SAND2006–1100.
    12. 12)
      • 9. Yang, W., Tavner, P.J., Crabtree, C.J., et al: ‘Wind turbine condition monitoring: technical and commercial challenges’, Wind Energy, 2014, 17, (5), pp. 673693.
    13. 13)
      • 18. Qiu, Y., Feng, Y., Tavner, P., et al: ‘Wind turbine SCADA alarm analysis for improving reliability’, Wind Energy, 2012, 15, (8), pp. 951966.
    14. 14)
      • 8. Tavner, P.: ‘Offshore wind turbines: reliability, availability and maintenance’ (Institution of Engineering and Technology, London, 2012).
    15. 15)
      • 11. Hu, R.L., Leahy, K., Konstantakopoulos, I.C., et al: ‘Using domain knowledge features for wind turbine diagnostics’. 2016 15th IEEE Int. Conf. Machine Learning and Applications (ICMLA). IEEE, 2016, pp. 300307.
    16. 16)
      • 19. Chen, B., Qiu, Y.N., Feng, Y., et al: ‘Wind turbine SCADA alarm pattern recognition’. IET Conf. Renewable Power Generation (RPG 2011), 2011, pp. 363368.
    17. 17)
      • 15. Godwin, J.L., Matthews, P.: ‘Classification and detection of wind turbine pitch faults through SCADA data analysis’, Int. J. Prognostics Health Manag., 2013, 4, p. 11.
    18. 18)
      • 5. Kusiak, A., Verma, A.: ‘A data-mining approach to monitoring wind turbines’, IEEE Trans. Sustain. Energy, 2012, 3, (1), pp. 150157.
    19. 19)
      • 21. PowerTech V.: ‘RDS-PP âĂŞ Application Guideline; Part 32: Wind Power Plants’, 2014.
    20. 20)
      • 1. Krohn, S., Morthorst, P.E., Awerbuch, S.: ‘The economics of wind energy’ (European Wind Energy Association, Brussels, 2009).
    21. 21)
      • 13. Kusiak, A., Verma, A.: ‘A data-driven approach for monitoring blade pitch faults in wind turbines’, IEEE Trans. Sustain. Energy, 2011, 2, (1), pp. 8796.
    22. 22)
      • 10. Leahy, K., Hu, R.L., Konstantakopoulos, I.C., et al: ‘Diagnosing wind turbine faults using machine learning techniques applied to operational data’. 2016 IEEE Int. Conf. Prognostics and Health Management (ICPHM), 2016, pp. 18.
    23. 23)
      • 23. Gonzalez, E., Reder, M., Melero, J.J.: ‘SCADA alarms processing for wind turbine component failure detection’, J. Phys., Conf. Ser., 2016, 753, (7), p. 072019.
    24. 24)
      • 12. Kusiak, A., Li, W.: ‘The prediction and diagnosis of wind turbine faults’, Renew. Energy, 2011, 36, (1), pp. 1623.
    25. 25)
      • 26. Ester, M., Kriegel, H.P., Sander, J., et al: ‘A density-based algorithm for discovering clusters in large spatial databases with noise’, Knowledge Discovery and Data Mining, 1996, pp. 226231.
    26. 26)
      • 6. Tautz Weinert, J., Watson, S.J.: ‘Using SCADA data for wind turbine condition monitoring – a review’, IET Renew. Power Gener., 2017, 11, (4), pp. 382394.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0422
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0422
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address