General mathematical model for the calculation of economic cross sections of cables for wind farms collector systems

General mathematical model for the calculation of economic cross sections of cables for wind farms collector systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A model for calculation of the economic cross sections of cables within the internal network of a wind farm is presented. The economic cross sections of the internal wind farm cables provide maximisation of the profit generated by the wind farm within its life-span through an optimisation of the balance between the investment and operating costs. This study presents a practical mathematical model for determining the optimal cable cross section based on: the wind statistics at the wind turbine location, wind turbine power curve, price of the electric energy, price of the cable, and interest rate. By using the developed model in the planning phase of a wind farm project each of the connection feeders within the internal cable network can be optimised. The proposed model is demonstrated by the example of a perspective wind farm with a rated power of 25 MW located in the region of Banat, Serbia. The calculations done for the observed wind farm show that the optimisation of the interconnecting cable cross sections makes profit increase of nearly 1 million Euro, compared to the model for the calculation of cable cross sections based only on technical limitations.


    1. 1)
      • 1. Taherkhani, M., Hosseini, S.H.: ‘Wind farm optimal connection to transmission systems considering network reinforcement using cost-reliability analysis’, IET Renew. Power Gener., 2013, 7, (6), pp. 603613.
    2. 2)
      • 2. Dobrić, G., Đurišić, Ž.: ‘Double-stage genetic algorithm for wind farm layout optimization on complex terrains’, J. Renew. Sustain. Energy, 2014, 6, (3), pp. 112.
    3. 3)
      • 3. Herbert-Acero, J., Probst, O., Réthoré, P.E., et al: ‘A review of methodological approaches for the design and optimization of wind farms’, Energies, 2014, 7, pp. 69307016.
    4. 4)
      • 4. Al-Shammari, E.T., Shamshirband, S., Petkovic, D., et al: ‘Comparative study of clustering methods for wake effect analysis in wind farm’, Energy, 2016, 95, pp. 573579.
    5. 5)
      • 5. Quinonez-Varela, G., Ault, G.W., Anaya-Lara, O., et al: ‘Electrical collector system options for large offshore wind farms’, IET Renew. Power Gener., 2007, 1, (2), pp. 107114.
    6. 6)
      • 6. Zhao, M., Chen, Z., Blaabjerg, F.: ‘Optimisation of electrical system for offshore wind farms via genetic algorithm’, IET Renew. Power Gener., 2009, 3, (2), pp. 205216.
    7. 7)
      • 7. Neagu, B., Georgescu, G.: ‘Wind farm cable route optimization using a simple approach’. Proc. 2014 Int. Conf. Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, December 2014, pp. 10041009.
    8. 8)
      • 8. Klein, A., Haugland, D., Bauer, J., et al: ‘An integer programming model for branching cable layouts in offshore wind farms’, Adv. Intell. Syst. Comput., 2015, 359, pp. 2736.
    9. 9)
      • 9. Hou, P., Hu, W., Chen, Z: ‘Optimization for offshore wind farm cable connection layout using adaptive particle swarm optimization minimum spanning tree method’, IET Renew. Power Gener., 2016, 10, (5), pp. 694702.
    10. 10)
      • 10. Hou, P., Hu, W., Chen, Z., et al: ‘Optimization of offshore wind farm cable connection layout considering levelised production cost using dynamic minimum spanning tree algorithm’, IET Renew. Power Gener., 2016, 10, (2), pp. 175183.
    11. 11)
      • 11. Hou, P., Hu, W., Chen, Z: ‘Offshore wind farm cable connection configuration optimization using dynamic minimum spanning tree algorithm’. Proc. Int. Power Engineering Conf. (UPEC), Stoke-on-Trent, United Kingdom, September 2015, pp. 16.
    12. 12)
      • 12. Hou, P., Hu, W., Chen, Z.: ‘Optimal selection of AC cables for large scale offshore wind farms’. Industrial Electronics Society, IECON 2014 – 40th Annual Conf. IEEE, Dallas, USA, October 2014, pp. 22062212.
    13. 13)
      • 13. Pemberton, A.M., Daly, T.D., Ertugrul, N.: ‘On-shore wind farm cable network optimization utilizing a multi-objective genetic algorithm’, Wind Eng., 2013, 7, (6), pp. 659673.
    14. 14)
      • 14. Wedzik, A., Siewierski, T., Szypowski, M.: ‘A new method for simultaneous optimizing of wind farm's network layout and cable cross-sections by MILP optimization’, Appl. Energy, 2016, 182, pp. 525538.
    15. 15)
      • 15. IEC 60287-2-1: ‘Electric cables – calculation of the current rating – part 2-1: calculation of the thermal resistance’, 2015.
    16. 16)
      • 16. IEC 60949: ‘Calculation of thermally permissible short-circuit currents, taking into account non-adiabatic heating effects’, 1988.
    17. 17)
      • 17. Đurišić, Ž., Mikulović, J.: ‘Assessment of the wind energy resource in the south Banat region, Serbia’, Renew. Sustain. Energy Rev., 2012, 16, (5), pp. 30143023.
    18. 18)
      • 18. Banuelos-Ruedas, F., Angeles-Camacho, C., Rios-Marcuello, S.: ‘Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights’, Renew. Sustain. Energy Rev., 2010, 14, (8), pp. 23832391.
    19. 19)
      • 19. Zeineldin, H., El-Fouly, T., El-Saadany, E., et al: ‘Impact of wind farm integration on electricity market prices’, IET Renew. Power Gener., 2009, 3, (1), pp. 8495.
    20. 20)
      • 20. ‘Epexspot, market data, day-ahead auction’. Available at auction.
    21. 21)
      • 21. Di Fazio, A.R., Russo, M.: ‘Wind farm modelling for reliability assessment’, IET Renew. Power Gener., 2008, 2, (4), pp. 239248.
    22. 22)
      • 22. Chen, C.-L.: ‘Key issues of wind capacity integration in congested areas of the Taiwan power system’, IET Renew. Power Gener., 2014, 8, (1), pp. 1021.
    23. 23)
      • 23. Ummels, B.C., Pelgrum, E., Gibescu, M., et al: ‘Comparison of integration solutions for wind power in the Netherlands’, IET Renew. Power Gener., 2009, 3, (3), pp. 279292.
    24. 24)
      • 24. Siemes, P., Haubrich, H.-J., Vennegeerts, H., et al: ‘Concepts for the improved integration of wind power into the German interconnected system’, IET Renew. Power Gener., 2008, 2, (1), pp. 2633.
    25. 25)
      • 25. Chang, T.P.: ‘Estimation of wind energy potential using different probability density functions’, Appl. Energy, 2011, 88, (5), pp. 18481856.
    26. 26)
      • 26. Yusuf, A.K.: ‘Determination of the best Weibull methods for wind power assessment in the southern region of Turkey’, IET Renew. Power Gener., 2017, 11, (1), pp. 175182.
    27. 27)
      • 27. Rocha, P.A.C., Coelho de Sousa, R., Freitas de Andrade, C., et al: ‘Concepts comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil’, Appl. Energy, 2012, 89, (1), pp. 395400.
    28. 28)
      • 28. Chang, T.P.: ‘Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application’, Appl. Energy, 2011, 88, (1), pp. 272282.
    29. 29)
      • 29. Masseran, N.: ‘Evaluating wind power density models and their statistical properties’, Energy, 2015, 84, (1), pp. 533541.

Related content

This is a required field
Please enter a valid email address